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ABSTRACT

Parallel computing is the wave of the future. As the need for computational power

increases, one processor is no longer sufficient to achieve the speed necessary to solve

today's complex problems.

The Air Force Space Command (AFSPACECOM) tracks approximately 8000

satellites daily; the model used by the AFSPACECOM, SGP4 (Simplified General

Perturbation Model Four), has been the operational model since 1976. This thesis

contains a detailed discussion of the mathematical theory of the SGP4 model.

The tracking of a satellite requires extensive calculations. The satellite can be

tracked more efficiently with parallel processing techniques. The principles developed

are applicable to a Naval ship tracking mulitple incoming threats; the increase in the

speed of processing incoming data would result in personnel being informed faster and

thus allow more time for better decisions during combat.

Three parallel algorithms applied to SGP4 for implementation on a Parallel

Virtual Machine (PVM) are developed. PVM is a small software package that allows a

network of computer workstations to appear as a single large distributed-memory parallel

computer. This thesis contains a description of several algorithms for the implementation

on PVM to track satellites, the optimal number of workstations, and methods of
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I. INTRODUCT[ON

The goal of this thesis is to illustrate how a network of IPX Sunstations can be used as a

parallel computer to solve a complex military requirement of tracking 8000 earth satellites daily.

Parallel processing has already been used in Global Climate Modeling, Superconductivity,

Seismic Imaging, and many other important applications in science today. Additionally, there are

other important military applications where the use of parallel computing would be extremely

advantageous. For example, today's Weapon Control Systems like AEGIS has enormous

computational requirments to detect and destroy incoming threats. The use of separate

computers located at individual enclaves versus a centrally located computer will reduce the

vulnerability of a ship should it take a direct hit in the computer station. The necessary

computing power will be continued by choosing unaffected stations; additionally, the increase in

speed of processing incoming data would result in faster informed personnel and thus allow

more time for better decisions during combat.

Parallel computing is the wave of the future. As the need for computational power

increases daily, due to an increase in technological developments, one processor is no longer

sufficient to achieve the speed in computations necessary to solve today's problems.

Two ways one can achieve greater computational efficiency with parallel processing are

1. Purchase a computer developed solely for parallel processing applications

or

2. Use exiting workstations found in most companies today.

The first option requires the purchase of a computer like the INTEL iPSC/2 Hypercube

multicomputer.



The INEL i'PSC/2 Hyperube at Naval Postgraduate school was purchased in 1987 for about

$100,000.00; the Hypercube requires an additional $6000.00 per year to maintain, it is used

solely for research projects.

"The second option, the use of existing workstations, requires only that one be willing to

utilize the power of idle workstation's CPU to achieve computational efficiency by dividing a

complex problem into smaller more manageable data components.

The average computer user in the workplace today does not require 100 % of the CPUs

power each hour of the day; additionally, at night the workstations remain idle until one logs in

the next morning or after the weekend.

The utilization of thousands of existing processors to solve problems with enormous

computational requirements will be common practice in the future. The price/performance

advantage of this practice has not yet been fully realized; however, tomorrows scientist will

wonder how we achieved the advances in science and technology today with the use of serial

processing alone.

Once one realizes that there is a storehouse of computer power ready to be distributed

freely, the next step is to learn how to utilize this power. This thesis will illustrate how a network

of workstations can be used to increase the speed at which satellites are tracked. This work will

become increasingly more important as the number of objects tracked daily steadily increases

and the number of calculations required skyrockets.

This is a continuation of the Parallel Processing Orbital Prediction work conducted at

Naval Postgraduate School in the Mcs Department orchestrated by Professors D.A.

Danielson and B. Neta. In June 1992, Warren E. Phipps, Jr. developed several parallel
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algauithms for the Naval Space Suveillance Centees analytic satellite motion model. The model

is imple in the FORTRAN subroutine PPT2. The algorithm were implemented on the

INREM itSC/2 Hypercube (Phipps, 1992). In March 1993, Sara Ostrom studied the parallel

comuing potential of the Air Force Space Command analytic satellite motion model

i mpm ted on the TEL iPSC/2 Hypercube (Ostrom, 1993). Currently, Leon Stone is

impleentig parallel algorithms for the Navy's Satellite model using Parallel Virtual Machines.

This body of work isthe result of the imple•mtation of the Air Force Space Command's

analytic satellite model, SGP4, using Parallel Virtual Machines.

Chapter II discusses the advantage of the Parallel Virtual Machine (PVM) in terms of

cost, availability and fault tolerance factors. The history and components of PVM are discussed

followed by a brief overview of a new extension to PVM called HeNCE. The chapter concludes

with a short discussion of other parallel software packages available like Express, P4, and Linda.

Chapter M describes the Air Force Space Command's analytical models SGP and SGP4 and

describes, in detail, the theory behind the prediction of a satellite's position and velocity.

Chapter IV describes three algorithms developed to study the parallelization of the satellite

computer code; additionally, a comparison of the each algorithm's performance is analyzed in

detail. The Lst chapter, Chapter V, contains conclusions ,ad suggestions for further research.

3



II. PARALLEL VIRTUAL MACHINE

In this chapter, the advantages of using a Parallel Virtual Machine (PVM) in

terms of cost, availability, and fault tolerance fkctors will be discusaed. The history and

compofnts of PVM will be covered followed by a brief overview of a new mxtsion to

PVM called t He'teI o Network Computing Enirooman (HeNCE). Finally,

other software packages like Express, P4, and Linda will be briefly descnrbed. This is a

synthesis of papers written about the Parallel Virtual Machine (see Dongarra Geist,

Manchock, and Sundeman ,1993).

Parallel Virtual Machine is a small sw A1ware package (- Mbyte of C source code)

that allows a hetergeneou network of Unix-based computers to appear as a single large

distnuted-memory parallel computer. The PVM package is good for large-prain

parallelism that is, at least lOOK bytes/node. 1he term virtual machine is used to

designate a logical dist ed-aemory computer and host is used to designate one of the

member computers.

The PVM software supplies the functions to aomatically start up tasks on the

virtual machine and allows the tasks to communicate and synchronize with each other.

Note, a task is a unit of computation in PVM and is analogous to a UNIX process.

A problem can be solved in parallel by sending and receiving messages to

accomplish multiple tasks. These message-lmssing constructs are common to most

distributed-memory computers. By sending and receiving messages, multiple tasks of an

4



application can cooperate to solve a problem in parallel. The applications can be written

in Fortran 77 or C.

PVM handles all message conversion that may be required if two computers use

different data reprsentations. PVM also includes many control and debugging features in

its user-friendly interface. For instance, PVM ensures that error messages generated on a

remote computer are displayed on the user's local screen.

PVM allows these application tasks to choose the architecture best suited to the

solution. PVM also supports heterogeneity at the machine and network levels.

At the machine level, computers with different data formats are supported as well as

different serial, vector, and parallel architectures. At the network level, different network

types can make up a Parallel Virtual Machine, for example, Ethernet, Fiber Distributed

Data Interface (FDDI), token ring, etc.

Users of PVM can also configure their own parallel virtual machine, which can

overlap with other usere' virtual machines. Configuring a personal parallel virtual

machine involves simply listing the names of the machines in a file that is read when

PVM is started.

A. ADVANTAGES OF PVM

The first advantage of using PVM is a reduction in cost; it is and will continue to

be costly to allocate large computing resources to each and every user. The beauty of

using workstations for parallel processing is that a user of a workstation may not use the

machine all the time, but may need more than what a single workstation can provide

5



when applications ae to be run. Many scientists are discovering that their ol

requirements are best served not by a single, monolithic machine but by a variety of

disiribut computing resources, Unked by high-speed netwodcs.

The second advata in network-based concurrent comput is the ready

availability of developmt and debugging tools. Typically, system that opete on

loosely coupled networks permit the direct use of editors, compilers, and debuggers that

are available on individual machines; also, users are already familiar with the use and

individual idiosyncrasies of each tool so that learning new skills is not necessary.

The third advantage is the potential fault tolerance of the network(s) and the

processing elements. Most multiprocessors do not support such a facility; hardware or

software failures in one of the processing elements often lead to a complete crash.

Additionally, it is the opinion of the author, that for Naval applications using different

workstations in different areas of a Naval ship can reduce vulnerability should the ship

take a direct hit in a critical are. The computing power needed for a combat system like

Aegis could be continued by choosing unaffected stations.

A study conductod by Eichelee and ProveNher (1993) explored using PVM

to model a survivable AEGIS combat system for a CG47 Ticondemra class AEGIS

criser model. Present naval combat systems possess only manual reconfiguration and

static rudimentary automatic reconfiguration scime. The study concluded that there is

a significant improvement in mission readiness when using a reconfigurable computer

architecture.

6



B. HISTORY OF PVM

In the summer of 1989, at Oak Ridge National Laboratory (ORNL), the

development of PVM software began and is now distributed freely in the interest of the

advancemae of science around the world. The driving force behind the initial

popularity of PVM was the ability to get an excellent price performance ratio- better than

any other computer system in the world. In general, a cluster of about 10 high

performance workstations is potentially capable of solving a problem as fast as a

supercomputer costing 20 times more; thus, PVM is rapidly becoming a defacto standard

for distributed computing. How did all this begin? The following is a brief history of

PVMs creation and it's creators:

Summer 1989: Vaidy Sunderam designed and implemented the first version of

Parallel Virtual Machine while visiting Oak Ridge National

Laboratory.

Summer 1990: Vaidy Sunderam and Al Geist refined the PVM software to

develop a Fortran interface and several parallel applications,

additionally, a graphical interface called XPVM was developed.

November 1990: Al Geist developed a PVM version of large material science

application code run on a network of IBM RS/6000's which won

the 1990 Gordon Bell Prize for best price/performance ratio of any

application in the world.
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December 1990: Sunderam and Geist entered their PVM research into the 1990

IBM Supercomputer competition and won first prize.

March 1991: PVM 2.0 was developed by Bob Mancheck from PVM 1.0 - the

earlier research version. PVM 2.0 was made publicly available

through netlib@oml.gov.

Summer 1991: Sunderam, Geist, and Manchek began working on the design

features of PVM 3.0 such as dynamic configuration and new

routine names. Additionally, a digest for users to exchange

information was set up at pvmlist@mathcs.emory.edu.

December 1991: Beguelin began the development of a new software package called

Xab, a monitor and debugger for PVM programs. This version can

be obtained by contacting adam@cs.cmutedu.

February 1992: PVM 2.4 was released and HeNCE was made available through

netlib@orl.gov.

Summer 1992: Geist and his student developed a package built on top of PVM 2.4

that dynamically load balances a users application.

February 1993 : PVM 3.0 released.

April 1993: PVM 3.1 released.

August 1993: PVM 3.2 is released.To receive this software send email to

netlib@oml.gov with the message: send Index from pvm3

or ftp from netlib2c•c.utkedu directory pvyr3.
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C. CONMPONENTS OF PVM

The PVM rystem is actually composed of two pats , the daemon and a library of

PVM interface routines.

The daemon is called pvmd3 (sometimes abbreviatedpvmd) and resides on all the

computers making up the virtual machine. Any user with a valid login can install this

daemon on a machine. When the user desires to run a PVM application, he/she executes

pvmd3 on one of the computers which in turn starts uppvmd3 on each of the computers

making up the user-defined virtual machine. A PVM application can then be started

from a Unix prompt on any of these computers.

The library of PVM interface routines contains routines for passing messages,

spawning processes, coordinating tasks, and modifying the virtual machine. The user can

call any of these routines and application programs must be linked with this library to use

PVM.

D. APPLICATIONS

A variety of applications have been developed over the past few years using

PVM. Below is a partial list of some of these applications:

* Material Science
* Global Climate Modeling
* Atmospheric, oceanic, and space studies

* Meteorological forecasting
* 3-D ground water modeling

Superconductivity, molecular dynamics
* Monte Carlo CFD application

9



* 2-D and 3-D -iuonic i
* 3-D n g flowficlds
* Paticle simulation
* DisMrbutd AVS flow visualiztion

As a esult of this thesis, one can add Orbital Predicton to this list.

Application pogm ar composed of sbtask (or componnts) at a moderate

level of granularity. The programs view the PVM system as a geneal and flexible

parallel computing resource which may be accessed at three different modes:

1. Transparent - subtasks are automatically located at the most

asites.

2. Architecture-dependent - subtasks specific for architecture execution are

chosen by the user.

3. Machine-.pciflc - subtasks are located on a particular machine to

exploit particular strengths of individual machines.

During execution, multiple instance of each component or subtask may be

initiated. Figure 2.1 on the next page illustrates a simplified architectural overview

of the PVM system (see Geist and Sunderman, pge 3, 1993).

10



Application 1

component Instances Application 2

Figure 2.1 Simplified Architectural Overview of PVM

Application programs under PVM may possess arbitrary control and dependency

structures; that is, at any point in the execution of a concurrent application, the processes

in existence may have arbitrary relationships between each other and any process may

Communicate and/or synchronize with any other. Any specific control and dependency

structure may be implemented under the PVM system by appropriate use of PVM

constructs and host language control flow satements.

Multiprocessing on loosely coupled networks provides facilities that are normally

not available on tightly coupled multiprocessors. For example, debugging support, fault

tolerance, and profiling and monitoring to fred hot-spots or load imbalances within an

application.

11



The diadvantages associated with networked concurrent computing are

generating and maintaining multiple object modules for different architectures,

considerations of security into personal workstations, and other administrative functions.

PVM supports two auxiliary components that provide some features to overcome these

disadvantages. First, the HeNCE interface is a graphical based parallel prog

paradigm. Second, PVM is undergoing extensions to make PVM work on MPP

machines which it now does on several made by Intel, TMC, Cray, and Convex with

KSR and Sequent underway ( Geist, 1993).

E. HETEROGENEOUS NETWORK COMPUTING ENVIRONMENT (HeNCE)

HeNCE simplifies the writing of parallel programs and was developed with two

goals in mind:

1. Make network computing accessible without the need for extensive training in

parallel computing

and

2. Make the resources best suited for a particular phase of the computation available

to the users.

In HeNCE the programmer explicitly specifies parallelism of a computation by

drawing graphs. The nodes in a graph represent user defined subroutines (written in

either FORTRAN or C) and the edges indicate parallelism and control flow. HeNCE will

automatically execute the subroutines in parallel (whenever possible) across a network of

heterogeneous machines. HeNCE relies on the PVM system for process initialization

12



and communicaion. If one wishes to write explicit message passing parallel programs

on a network of machines they should use the PVM system directly.

Once the graph is complete, HeNCE will automatically write the parallel program

including all the communication and synchronization routines using PVM calls. HeNCE

tools exist to assist the user in compiling this program for a heterogeneous environment.

HeNCE is composed of five integrated graphical tools. Below is a brief

explanation of each tool:

1. Compose - use to specify the parallelism of an application by drawing a

graph illustrating dependencies between procedures

2. Configure - use to specify a network of heterogeneous computers to be

used as the PVM and defines a cost matrix between machines

and procedures

3. Build - use to compile and install the procedures written by the

compose tool

4. Execute use to dynamically map procedures to machines for execution

of the application and collect tracing information

5. Trace - use to read the trace information and display an animation of

the execution, either in real time for debugging or later for

performance analysis.

13



An nitial version of HeNCE is available through the mlib.To obtain HeNCE

send email to nthI@ornl.gv and next to subject one should type: amd ludes from

emce; any problems with HENCE can be addressed to: hemcemsrepmeor.LoV.

F. OTHER SOFTWARE PACKAGES

Various odtr software packages have been developed that enable scientists to

write htonus progams; these, as well as PVM, have evolved over the last sveral

yews, but none of them can be considered fully mature. It is an exciting time in

parallel compoung and thee ae many grand challenges for scentists to explore.

I would like to briefly discuss some of the other software packages, in order that

the eader will be familiar with their names and featuoes (see Dongarra, 1993).

Examples of such other software packages include Express, P4, and Linda; however, it

is important to note that these packages are by no means the only ones in existence. Each

package is layered over the native operating systems, exploits distnruted concurrent

processing, and is flemxble and general-purpose; all exhibit comparable performance.

Their differnces lie in their popgrmming model, their implementation schemes, and

their efficiency.

Express toolkit as a collection of tools that individually address various aspects of

concrent comutation. The toolkit is developed and marketed commercially by

ParaSofl Corporation, a company started by some members of the Caltech concurrent

computation project. Express is based on beginning with a sequential version of an

application and following a rcomme ded development life cycle culminating in a

14



parallel version that is tuned for optimality. The core of the Express system is a set of

hlibaries for -omi-mnication, 10, and parallel graphics.

P4 is a libray of macros and suroutines developed at Argonne National

Laboratory for programming a variety of parallel machines. P4 mports both the

shared-memory model and the distributed-memory model In the proce mangm

mechanism in P4 there is a "master" process and "slave" processes, and multilevel

hiemrchies may be formed to implement what is termed a cluster model of compuaion

Shared Memoy support via monitors is a d iing feature of P4; however, this

feature is t distributed shared memory, but is a portable mechanism for shared address

space programming in true shared memory multiprocessors. A set of macro extensions

was developed at GMD (CGesellschafi fOr hMatematik und Datenverambeitung in Schloss

Birlinghoven, Gemany) called Parmacs. Prmacs provided Forur interfaces and a

variety of high-level abstractions dealing with global operations to the P4 system.

Linda is a concurrent programming model that has evolved from a Yale

University research project. TIe primary concept in Linda is that of a 'tuple-spacep, an

abstraction via which cooperating processes communicate. The tuple-space concept is

essentially an abstraction of distributed shared memory, with one important difference

(tuple-spces are associative), and several minor distinctions (destructive and

non-desructive reads, and different coherency semantics are possible). Applications use

the Linda model by embedding consructs that manipulate the tuple space. Recently, a

new system technique has been propoed, at least nominally related to the Linda pojeq

15



This scheme, termed "Pirhana" proposes a proactive approach to concurrent computing

where resources seize tasks from a well known location based on availability and

suitability.

16



III. SGP AND SGP4

A. SIMPLIFIED GENERAL PERTURBATION MODEL(SGP)

The original model used by the Air Force Space Command to track satellites was

the Simplified General Pertubation model (SOP). The model was simplified by the

exclusion of perturbation effects caused by higher order terms in the Legendre expmnion

of the Earth's gravitational potential or other celestial bodies like the moon or the sun.

The model also assumed the drag effect on mean motion as linear in time; this

assumption dictated a quadratic variation of mean anomaly with time. The drag effect on

eccentricity was modeled such that the perigee height remained constant (Hoots and

Roehrich (1980), page 2).

These simplifications allowed an analytic solution to the equations of motion.

Although the solutions are not as accurate as numerical techniques, they are

computationally less expensive. Semi-analytic models increase the accuracy while

decreasing the computational cost. See Dyar (1993) for comparison ofvarious models in

terms of accuracy and computer time required on a Sun Sparc 10.

Hilton and Kuhlman (1966) developed the analytical SGP model. SGP's

gravitational submodel is a simplification of the work done by Kozai (1959) and Brouwer

(1959). For a more detailed discussion of the SGP model see Hoots and Roehrich (1980)

and Sara Ostrom (1993), pp. 10-20.

17



3 SIMPLIFIED GENERAL PERTURIATION MODEL FOUR (SGP4)

1. Overvlew

The second model, SGP4, was obtained by a simplification of a more extensive

analytical theory developed by Lane and Cranford (1969) which uses the solution of

Brouwer (1959) for its gravitational model and a power density finction for its

spheric model [Hoots and Roehrich (1980), p.2]. SGP4 had replaced SGP as the

operational theory at the AFSPACECOM by 1976.

ThIe SDP4 extension to SOP4 was developed to be valid for d..epace satellites.

The deep-space equations were developed by Hujsak (1979). SDP4 models the effects of

the moon and suam in addition to certain sectoral and tesseral Earth harmonics that

become important for half-day and ono-day period orbits.

The SGP4 and it's extension, SDP4, are both analytical models. They identify

variations in terms of changes in the osculating elements with respect to time. The

models are more accute than the original SGP model due to two factors:

1. The inclusion of zonal harmonics through J4 ; whereas, the SGP model

only included rznal harmonics through J,.

2. The inclusion of a drag force in the equations of motion venus the linear

sim ti n of the SOP model.
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The main program, DRIVER reads the input and calls either SGP4 or SDP4. If

the satellite is "near-earth" (e.g., orbital period less than 225 minutes) then SGP4 is

called, otherwise, the satellite is classified "deep-space" and DRIVER calls SDP4.

SGP4 and SDP4 receive input from the DRIVER and perform calculations

necessary to return to the DRIVER the position and velocity vector in units of earth radii

and minutes. The DRIVER performs a unit conversion to kilometers and seconds for

SGP4 and SDP4 both call two functions, ACTAN and FMOD2P. ACTAN is

pawsed the values of sine and cosine and returns the angle in radians in the range of

0 to 2a. FMOD2P is passed an angle in radians and returns the modulo by 2n of that

angle.

Additionally, SDP4 calls the subroutine DEEP. The first time DEEP is called

certain constants already calculated in SDP4 are passed through an entry called DPINT.

All initialized quantities needed for deep-space prediction are calculated, At this time, it

is also determined whether the orbit is sychronous or if the orbit experiences resonance

effects. During initialization, the subroutine DEEP calls the function THETAG. The

function THETAG obtains the location of Greenwich at epoch and converts epoch to

minutes since 1950.

The next time SDP4 calls DEEP occurs during the secular uvdate portion and is

via the entry DPSEC. The secular update portion of SDP4 is where additional secular

and long-period resonance effects are added to the values of the "mean" orbital elements.
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Te final access to DEEP occur via DPPER where the appropriate deep-space

luar and solar periodics art added to the orbital elements.

2. Iput Parameters

The SGP4 model uses the ax orbial elcments, a drag factor, and an epoch

refermce, time to prdict the sallite position and velocity vectors at a future time.

The six obital elements are "men" values obtained by removing periodic

vations in a particular way. The elements are given below along with the name

msigned to each in the SGP4 Fortran computer code:

ARIABLE NAME SYMBOL IN ThEORY COMPUTER CODE
Man Motion at Epoch no XNO

e. EO

iiation of Orbital Plane o XINCO
the Equator_ _ _ _

St Equator

t Ascension of the no XNODEO
Node

of Perigee (DO OMEGAO

Anonoly at Epoch XMAO

Table 3-1 Classcal Orbital Elements

The following diagram will be usefIl throughout this discussion in visualizing

the satellites orbit and the anges given in table 3-1 above:
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Earth's North Pole zSatelliteOriPln
S~ Orbit Plane

Auxiliary Circle

Perigee

E =eccentric anomaly /
V true anomaly

E - esinE =M n(t - T)

Figure 3.1 Caausicll Orbital Elements
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3. PROGRAM SEQUENCE FLOW

The ten main steps to solve for position and velocity vecors art as follows:

1) Recover orgul mean motion and senimajor axis from the input elements.

2) I• necessay, update the parameter for te SGP4 demsity function.

3) Calculate comtants using apr*rt values of the density fuiction from
step two above.

4) Account for the secular effects of atmospheric drag and gravitation.

5) Add the long periodic terms.

6) Solve Kepler's equation.

7) Calculate the preliminary quantities needed for short periodics.

8) Update the osculating quantities using the short periodics.

9) Calculate the unit orientation vectors.

10) Calculate the postion and velocity vectors.

The SDP4 model follows these same steps with the addition of several calls to the

subroutine DEEP which was discussed earlier.

C. EQUATIONS

This section will describe the equations developed by Hoots and Roehrich (1980),

pp. 14-37. The ten main steps listed above will serve as the outline of the discussion.

A strict parallel stucture exists between the computer code and the equations.
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1. Recover Original Mean Motion and Sendmajor Axis

The input variable for mean motion (no) requires modification after which it is

denoted by g". This modification to n. is accomplished as follows:

n. ..... mlationship ofnlo' to n.

where

a. 8 3k2(3 cos02i - 1)
2a,2(l -e.)

b. k2 J= J2= the second gravitational zonal harmonic of the earth

2

aE : the equational radius of the earth squared

C. a o " a ll( 31 i -

d. 81 = 3k 2(cos 2i0 - 1)2a2(l -e2)311

e. al =2( where k. = ýG'MG is Newton's universal gravitational

constant and M is the mass of the Earth.

2) To recover the semimajor axis use a= where . is the same as above.
1+8.

2. Update The Parameter for the SGP4 Density Function

Two parameters, s and qo , for the SGP4 density funcion may require

adjustments. The wale height parameter constant used by SGP4 is
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s 1.01222928 earth mdii (or); s changes depending on the height of the saeli at

pegee. For perigees between 98 kilometers and 156 kilometer. s is replaced by s,

when s = a(1 - e.)- s + aj with units of earth radii and wher perigee height is

cxalclted by perigee = [4l(1 - o) - aEJ * RE (kilometers) and R, is the spherical

earth radius.

For perigee below 98 kilometers, s is replaced by s* where

s* =-20 + aE AXMPER= 6378.135 KikometeuEarth radii= PER +a

It should be noted that ifs is changed then a term (q. - s)4 is also replaced

by (qo -_s*)4.

From this point on, the double-prime notation will be dropped for the mean
motion and the semimajor axis, as well as the * on a. It will be uderstood
that these corrections have already been made when the symbols no, a.
and s are ued.

3. Calculate Constants

a. The following constants are calculated for both SGP4 and SDP4:

0=Cos i.

O= Si

p e= (1i-
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Cj=B* 0 C2B*= drag coefficient

C2 = (qO - S)444n,(I - T, 2 y-7 4:[a,(1 + 1112 + 4eoTI + eoTl)$-

2(1-112) 2 2'

C4 = 2n*(qo _ S)444a,p,(1- n12)7120

([2ii(1 -e,¶1)+-eO+.3 U2 ]-(132X~ 2-2,n eq

21-2 122 2!1q ;.(I -112) 2T 2

+4(1 -0X21 - eoij - eOi 3)cos2co,])

b. The following constants are calculated by SGP4 only for perigee above 220

kilometers:

=(q, -a) 4 44 3onoa-vsini0 ~, LO - 3
C3 = ~k2e. htA. Ja

CS = 2(qo - S)4 ,44a.P.2(l - T,)7l+.L (tl(I+ e,) + eOi9

D2 = 4a, C1

04ae2(1a + S)C3

3

D4  32 4,43(221a, + 3lS)C4
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4. Secular Effects of Atmospheric Drag and Gravitation

M0 , w. , and Ql. arm updated as follows:

a. First, MDF , w0DF , and n1DF are calulated:

0

1) MDF = M. + MAt

0
2 ) aoDF = co + o) At

0

3)QDF= (I,+ Q At

where At = t - to = time since epoch and

= + 3k2( 1+0o 3302) + 3k(13 -17802 +L370)]

M =[1+ 3 + 6a 4P7  rn,

- - 502) 3k2(7 - 11402 + 3950 + 5k4(3 - 3602 + 4904)]L 2a(1 2 + l6a4pS+ 4a4n

[-3k26 + 3k2(40 _ 190) 5k 40(3 - 702)

2a4 2oo 2 n.

Recall that, k2 = -IJ2a2 J 2 = the second gravitational zonal harmonic of the Earth
2 E

-3 4

and k4 = JOE J4 = the fourth gravitational zonal harmonic of the Earth
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Note: this is the point in SDP4 whem the DEEP intalizaWon for deep-space

calculations is entered through DPINT discussed earlier.

b. ThenMP , ,and Q at calculated by

1) M, = MDu+ 80 + BM

2) o = ro -&o- &M

3) Q = CID - 21nok2OCiAt2

2p22ao, 0

If perigee is less than 220 kilometers

80-= aM= 0

otCrwise,

&D = BC 3(Cososo)AL

A ( S)4B%4-'AL[(1 + T COSMDw) 3 -(1 + , coSMo) 3j

Note: At this point SDP4 calls the secular portion of DEEP via DPSEC to add

the deep-space secular effects and long-period resonance effects to the

six orbital elements.

c. Next, e , a , and the mean longitude, L , are updated as follows:

1) e = e. - B*C4AI - B*Cs(sinM, - sinM.)
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2) a = ao[1 - CIAt - D2A 2 - D3At3 - D4 &4]2

3)L =Mp+ + r+Q+n,.[2CA0 + (D22 +

+ 16(3D3+ 12CD 2 + 10C13)A

+tPD,+ o12CD3 + 6D2 + 30 jD 2 + i5C.,)A5 ]

If the perigee height is less than 220 kilometers then a and L equations are

tnaated after the C, term and the equation for e is Utrncated after the C4 term.

CL The lastMopinthis section is to calculate P and n :

1) 2

2) n k @

Note: At this point SDP4 calls the periodics section of DEEP via DPPER to add

the deep-space lunar and solar periodics to the orbital elements.

S. Add The Long Periodic Terms

The addition of long-periodic zonal effects are accomplished by the following:

a" a = ecosm

Aa ,osin zo

b. av, = esinro + ari where, arN = 4kpA3 2
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amw and a are the horizontal and vertical components, respectively, of the

eccentricity vector with respect to the line of nodes vector. The following figure

illMustrates the geometry of the components:

Satellite's Orbit

*L
Foce Center $

a N -- MFL

Figure 3-2 Geometry of Eccentricity Vector and Node Vector

Th mean longitude is then calculated by:

LT =L+LL

whe, LL=A 3 .osinio (3+50)

8k2ap2  kf+(

Recall that L was calculated in the previous section.
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6. Solve Kepler's Eqsution

Solwe Keplers equation by a method of suc sive appximations.

Let U=LrT-

and U = (E + ), the first tem in the iteration of the um of the eccentric amnomly and

th resulting argument of perigee. 1hus,

U= U.+AU

for successive iterations, that is

(E + cm)j+i = (E + o,), + A(E + co)j

LWt EPW=E+re• then

A(EP), = U - awmcs(EPW), + azain(EPW), - (EPFH
-arsWin(EPW/)i - azpicos(EPW)i + I

Continue iterations until IA(EPW),I < 1.0-6 then set E + w = (E + e(),.

7. Short Periodic Preliminary Calculations

The following equations are the preliminary calculations, the results are added in

section eight to obtain the osculating quantities:

a. ecosE = amvcos(EPW)+ amysin(EPW)

e.nE = amvsin(EPW) - amrcos(EPW)
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b. *L =(a + al)

C. PL= a(,l-eL2)

4 r a(1 - cosE)

g. Temp3 2

k. cos u f [cos(EPW) - amv + ayN (e sinE) Temp3]

i. sinu f [sin(EPR) - ar- a" r(e sin E) o Tenmp3J

j. u= - - 1)sinnu

m. AD k - 0~i2ur

2pL S2
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L Ai = k uinicos 2u
2pl

0. Ar = - - 2)sin2u

P. Arý IL (I 2(

& Update The Osculating Quantltius

Now, the short peuiodic prelimimry results ame added to obtain the osculaing

quantities:

2 pL2

b. ug" u + Au

C. flir =fl + AD

d. ij = i

C. r;=r+A;

f. f .r+&
f rjK = rý + Ar2
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9. Calculate Unit Orientation Vectors

The osculating angles found above ae utilized to find the unit orientation vactors

as follows:

-mz siniK
Nxco cos(1

TV = Ny inncsx J
Nz0

then V = Msin UK + Ncos uK

and f = Mcos UK -Nsin UK

10. Calculate The Postion And Velocity Vectors

Finally, the position and velocity vectors are calculated as follows:

F= rrU

r= jr u +(r

This results in the position and velocity in units of earth radii and minutes. The

postion and velocity vectors ar then passed to the DRIVER at which time the unit

conversion to kilometers and seconds is accomplished

33



IV. PARALLELIZATION OF SGP4 USING PVM

A. OVERVIEW

The goals of this chapter are two-fold:

1. Explain how the Air Force Space Command's sallift code was parallelized

using the Parallel Virtual Machine and

2. Compma vanous algoithms in term of total time, conmunicaltion overhead,

speedup, and efficiency.

a Speedup (Sp) is calculated as follows:

Ttsp=

where

T, = Endtoend Time on a Single Processor
Tp = Endtoend Time on p Processors

Note: Endtoend Time will be the term used to denote the total time to
execute the program not including the time to read the input file.

b. Efficiency is calculated by:

E SI,

where

Sp = Speedup for p processors
p = Number of processors
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Thr algorithms were developed to study the performanm of the parallelization

of the satellite code. The algorithms were based upon previous work completed by Ford

and Carvablo (1993).

Data was collected for each algorithm; each execution time is the result of an

average often recorded run times.

Analysis was performed on each algorithm's results by comparing each model's

performance and the use of four, eight, and sixteen nodes to execute the tasks.

It is important to note that with the use of an open network of computers them is

undoubtedly going to be fluctuating machine and network loads. Multiple users and other

competing PVM tasks cause the machine and network loads to change dynamically; thus,

in order to have sufficient balancing great care was taken to collect data at times where

the load on the system was relatively constant. However, due to the fluctuation of open

networks, the repioduction of the exact data results would be impossible.

In addition to the intem load discussed above, one needs to consider Load

Balancing. Load Balancing refers to the degree to which all nodes are working to solve

the problem at hand. There are generally three types of Load Balancing according to

Geist (1993):

1. Static Load Balancing

The problem is divided into separate tasks which ate assigned to the

processors only once. The number or size of each task can be varied

to utilize different computational powers of machines.
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2. Dynamic Lead Balancing by Pool of Tasks

This is usually used with a Master and Slave scme, the master continues to

deal tasks to idle slaves until the task queue is empty. This results in the faster

processre ivi morn tasks.

3. Dymamic Load Balancing by Coordination

Typically used by Single Progrmn Multiple Data Stream (SPMD) where each

processor receives a single set of instructions, receives and manipulates data,

and redistributes its work at fixed times.

TIe second type, Dynamic Load Balancing by a Pool of Tasks, where a Master

and Slave scheme exists was utilized in this research.

The Master/Slave approach is currently a popular distributed prgamming

scheme. The Master starts all the Slave tasks and coordinates their work and

inputoutputo All three algorithms developed use a Master/Slave approach.

Two other distributed progamming schemes are the "hostless" Single Program

Multiple Data (SPMD) and the Functional schemes (Geist, 1993). The "hostless" SPMD

uses the same progrmn executed on different pieces of the problem; whereas, the

Functional scheme consists of several programs each one performs a different function in

the application.
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B INPUT DATA

App.riaty 8000 meliu t a trackwd by the Air Force Space Command

(AFSPACECOM) in Colm-ado Spdnp daily thus, a file con• iing of M0 satellite enne

was created. Note that the - nearcih record and deep-space record was copied to

geate 8000 int records.

Each entry or input record consists of tweny-two indiidual numerical values.

Table 4-1 on die following pa illustrates a typical input record used.

Note that the input record used by AFSPACECOM consists of seventeen

individual nurerical values (see Hoots and Roehrich, 1980, p.91). Table 4-2 on page 39

Illustrates a typical AFSPACECOM record.

There is a direct conespondence between the first 17 values of the input record

used in this rearch and the farst 16 values of the AFSPACECOM record. The

seventeenth entry in the AFSPACECOM record is the epoch rvoluions that have been

recorded since the object was first launched. Note that this information is not used to

calculate the position and velocity vetors of the satellite.

The entries 18 -22 in Table 4-1 simulate the number of calls made either to SGP4

or SDP4 per input record as will be expaie later.
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Name Explanatacs ____________

1 Cardno 2 card format 1
2 Satlite number Satellite ID 38888

3YR Year 93

4 RDAY Day 275.98708465

5 XNDOT Dcvad of mean 0.01431103
motion _ _ _ _

6 XN2DT 2nd derivalive of mean 0.00000000
motion _ _ _ _

7 IE Exponent of XN2DT 0

I BTERM Drag term 0.14311

9 iE2 Exponent of BTERM -1

10 EPHTYP Ephemers type 0

111 CRDNO2 Card number 2 2

12 XINCO Inclination 46.7916

13 XNODEO Right ceinson 230.4354

14 EO Eccenricity 0.7318036

15 OMEGAO Argument of perigee 47.4722

161XMAO Mean Anomaly 10.4117

17 XNO Mean motion 2.28537848

18 TYR Start year 93

19 SRDAY Start day 276.98708465

20 JYR Stop year 93

21 SPDAY Stop day 277.98708465

22 DELTA Time step in minutes 60

Table 4-1 Example of Input Record
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Name ______ _ Example

I Cardno 2 card format 1

2 Sftet number Stlite ID 00603U

3 International YA'/Lamch No./ 193-022B
deomaor Piece

4 Epoch time Year and day-lot 2 93162.71380243
digh wre the year the
odie are dte day

5 or B Mean motion 0.00073094
2 d•eavtW~v/da9) or

_______ (m2/kg)

6 mean motion dot dot Mcan motion 2nd 0
derivatiwi6

7 BSTAR Drag term (eu") : the -3 45562-3
is thdeponent_

8 Ephtype Denotes model : 2 is 2
for SGP4

9 Element No. Element number 864

10 Satellite number Satellite number of 00603U
_____ ____ ___ ard 2_ _ _ _ _ _ _ _

11 inclination 99.8623

12 1o Right ascension 245.9276

13 e, Eccentricity .0006273

14 0c0 Argument ofperigee 337.4473

15 MO Mean anomaly 22.6464

16 n. Mean motion (rev/day) 15.03410461

17 Epoch rev Epoch revlutions 59663

Table 4-2 Typical Input values for AFSPACECOM
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The entry number 17 in Table 4-1 and entry number 16 in Table 4-2, the mean

motion (XNO), determines whaehr or not the matelite is a deepup object. SGP4

propagates data for near-earth satellites which require more frequent trwaking due to the

a drag faio and SDP4 propagates data for the deep tellites.

In order for an object to be clasified as deep-space the period must be greater

than 225 minmutes. The period is calculated by

2n~3 (days)

For a period grater than 225 minutes XMO must be l than 6.4 since:

= 2x (daY(24hour (,60 n)(Rev) > 225 minutes

Rearrange and solve for AWO:

1440 min
225 min

That is,

6 4 Rev
O< day

Thus, the example in Table 4-1 illustrates a deep-space satellite and the example

in Table 4-2 illutras a near-earth satellite.
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Out of te 3000 satlice tracded pproimatly 85 % we near-arth amid 15 % ae

deep-space; thermoe, 6300 of he S000 input records (Consisting of 22 deements eaci)

were near-c and the rnmaining I2o00 mcods were deep-pace.

The requiremut for mo. frequent trckng of near-emt saelims was simulated

by requiring 72 calls to the SGON mroutine per inpu rmord resulting in 72 output

records geaerated per input record. If the satelt was deep-space the SDP4 submrine

was caled 24 tines pr in• ord, resulting in 24 output records generated pe input

record. 72 and 24 was choomen to pwaal the work done by Os~om (1993). The output

record cMnisted of the time since the last propagation, three comqn of the position

vector, mad three comnponents of the velocity vector for a total of 7 output data elements

per outpu record.

To illustra how this was accompished, consider the input record mn Table 4-1.

The difference between the start year and day is one day or 1440 minutes. The time step of

60 minuteu/calM (over a period of 1440 minutes) resulted in 24 calls to the SDP4

subroutine.

C. ALGORITHMS

1. Overview

Three algorithms were considered in order to maximize load balancing and

minimize ommuniation overhead. Al thre algorithm used PVM to simua a 2D torus

topology. A 2D tons is like a 2D mesh wit rte addition of communication links between

the nodes located at the "edge" of the mesh.
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2. METHODS

a. Sequeatiai

The Sequential pogram was developed to be the most efficient obtainable,

in order to emure the record of speedup values would not be misleading.

(1) Sequential Algorithm

READ DATA FILE
REPEAT
CALL PROPAGATION SUBROUTINE

UNTIL all input records have been converted to position and
velocity veors

COL•ECT timin statistics

The sequential progpam can be found in Appendix A.

b. Parallel

In the following discussion the term "node" will denote one Unix-based

workstation In a given network;specilfcally, one SUN microsystem

SPARC station IPX.

In order to maximize the load balancing, a dynamic load balancing method by a

pool of tasks was utilized. One node was designated the "Master" while the other nodes

became the "Slaves". One of the slave nodes was designated as a collecting node. A

separate collecting node is an advantage over having the master collect, since collection

will begin before distribution is complete. This is also similar to the configuration used

by Phipps (1992) and Ostrom (1993) in their work on parallel orbit prediction on the

INTEL Hypercube.

42



When four node were utilized one node acted as dhe master and dealt tob to two

waiing nodes to aomplete. Th remaining node acted a die coet by cellec• in de

amalts from the working nodes and reuning die rsults to die master. The researh

conducted by Ford and Carvalho (1993) concluded that a separate collecting node is a

deffiit advantage over hvig die master collct, aine collection can begin evn before

ame d ibut is complete.

In a similar fahion, when eight nodes were utilized thre was a total of 6 warking

nodes and when sixteen nodes were utilized there was a total of fouteen workng nodes.

3. Parallel Algorthms

a. Answer Back Method (ABM)

The first approach was to mindiize the time a woarer spent idle waiting for more

data. The requwrement was that the slave notify the master when it had cmpketd itfs tasks

and was ready for more dat. Tins would result in the fste workers processimg the most

data. The algouhnm for die Mna Program is as follows:

READ entire satellite catalog input file
ENROLL in PVM and spawn n + 1 slaves
DESIGNATE I collector and n workms
REPEAT
PACK m sets of satellite input recor
SEND data to worker
UNTIL each waiter has m sets each
REPEAT

PACK meae of satellite input records
WAIT until worker mends ready signal
SEND data to worker

UNIL al complete sets of m have been sent
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REPEAT
PACK any leftover satellite input records
WAIT until worker sends ready signal
SEND data to worker

UNTIL 8000 input records have been sent
SEND stop signal to worke=s
WAIT for program complete signal from collector
GATHER and compute timing staistics from slaves.

The algorithm for the Answer Back slave program is as follows:

INITIALIZATION
IF I am the collecting node

REPEAT
WAIT for one set of results
STORE results
UNTIL all results have been collected from the workers

SEND program complete signal to master
ELSE

rm a working node
REPEAT

WAIT for data packet from master
REPEAT

UNPACK data
CALL propagation subroutine
PACK results
SEND results to the collector

UNTIL no more input records in the packet
SEND ready for more data signal to the master

UNTIL master sends stop signal
END IF.

The Answer Back programn can be found in Appendix A.

L Successive Deal Methods

The second and third algorithms were developed to decrease the communication

time between the master and slaves. The input records were dealt to the workers in sets
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m at a time. Ater givin each worker an inital set, he master conmti•d to deal input

reo uti all 8000 records had been oent

The successive deal methods ae basicaly the swoe, the differenc lies Finthe

the input data i dedt to each worker.

hI the secord agithm (Successive Deal Model 1 to sudy the result of mending

lbrge data packets, each woarer is dealt an input data set consitg of m records with 22

elements each. Next, 1/(2"p) of the remaining records are dealt to each woarer. Finally,

1/p of the ranining recod is dealt to each worker. Note that if any records are leftover as

a result of the integer division, the ieftovw are sent Iast For example, if

n = number of data records
m = number of records sent sinultaneously
p = number of woaring proceusors or nodes
s = sets of m records to be distributed.

and we let, n =8000
m=15
p=2

8000 records=53seso1
Then, tie number of sets to be distributed is s = 10 rer, = 533set of 15

with 5 input records leftover. Now, a set is sent to each worker leaving a total of 531 sets

left to be distriuted. Next, 1/(2*p) records are dealt to each worker that is,

, (531 sets) = 132 sets are giv to each worker.

Thius, the number of Sets left to be distributed is

s = 531 - (2"132) = 267 sets.
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Neit, 1/p mnkods man dealt to each worker, tint is, (1/2)0267 sets = 133 sets am

dituted leaving 1 set kftover. Fnlly, the leftovrs are sent to a worker ad Al the

put records have been dtbuted

Ih e thehird Woritm die Successive Deal Model 11, de master deals out one set

combnS of m input records to each worker. TWN the nmaer cotinuem to del out daa

sea im all the records have been distributed. For eaimple, using die vm"ble defined

above, let

n = 3000
m=15
p=2

then,

W000 records = 533sets + 5 records, ' floer.
15 records/set

First, one set is g1i to each worker, resulting in 531 sets left. Then, the sets would be

distn'buted, one at a lime, first to one worker and then to the other worker. Last, the

lftover records mu sent.

(1) Successive Deal Method I (SDI) Algorithm

Master Algorithm

READ entire sateFlt catalog input file
ENROLL in PVM mid spawn n + 1 slaves
DESIGNATE I collector and n workers
REPEAT

PACK one et of m input records
SEND data to worker

UNT each worker has one set
REPEAT

PACK 1/(2*p) records
SEND data to worker

UNTIL each worker has a packet
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REPEAT
PACK remaining sets
SEND data to worker

UNTIL each worker has a equal packet
REPEAT

PACK leftovers
SEND leftovers

UNIL all input records have been sent
SEND stop signal to workers
WAIT for program complete signal from collector
GATHER and compute timing statistics from slaves.

Slave Algorithm:

DNTIHAUZATION
IF I am the collecting node

REPEAT
WAIT for one set of results
STORE results
UNTIL all results have been collected from the workers

SEND program complete signal to master
ELSE

rm a working node
REPEAT

WAIT for data packet from master
REPEAT

UNPACK data
CALL propagation subroutine
PACK results
SEND results to tf ?ollector

UNTIL no more inp. record in the packet
UNTIL ma sends sop signal

ENDIF
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(2) Successive Deal Model H (SDIU) Algorithm
Mater Algorithm:

READ entire satellite catalog input file
ENROLL in PVM and spawn n + I slaves
DESIGNATE I collector and n workers
REPEAT

PACK one set of m input records
SEND one set to each worker

UNTIL each worker has one set
REPEAT

PACK m sets of input records
SEND data to worker

UNTIL all m sets have been distributed
REPEAT

PACK remaining input records
SEND data to worker

UNTIL all input records have been distributed
SEND stop signal to workers
WAIT for program complete signal from collector
GATHER and compute timing statistics from slaves.

Slave Algorithm:

INITIALIZATION
IF I am the collecting node

REPEAT
WAIT for one set of results
STORE results
UNTIL all results have been collected from the workers

SEND program complete signal to master
ELSE

rm a working node
REPEAT

WAIT for data packet from master
REPEAT

UNPACK data
CALL propagation subroutine
PACK results
SEND results to the collector

UNTIL no more input records in the packet
UNTIL master sends stop signal

END IF.
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For the source code of the algorithms discussed above see Appendix A. The

program. developed were written In C. The SGP4 code is writtn In FORTRAN. The

C framework using a PVM architecture calling a FORTRAN satellite propagation

subroutine was succeslM

D. PROGRAM OVERVIEW

1. Sequnti

The sequential vauon was executed 10 times and the total nrn times were

averaged. This was done four tnes and the four aerage values wen averaged resulting

in a sequential time Ti, which is used in the calculation of speedup.

The total time for the program to execute did not include the initial time to read the

entire input catalog because this was done one time only at the beginning of each program.

From this point on the total time to execute the program , excluding readtime will be

called endtoend time. The sequential average endtoend time was used

in the calculation of speedup which will be discussed in the Parallel section below.

2. Parallel

In each program discussed under the Parallel Algorilhm section above, time clocks

were inserted at vaious locations in order to measure the time to read the entire input

catlog the endtoend time, the workers comnkmicafion time, and the workers calculation

time.
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The number of matul inpt rcords (conudng of the 22 hiput valn) sme

iunuameawly to each woker was chosen to be either 5, 10, 15, 20, 25, 30, 35, 40, 45,

50, or 55. This was based upon previous work done by Ford and Carval (1993).

Twe number of nodes utiled was 4, 8, or 16. To configure de personal paralld

viual machine, a list of names of the Unix-based achines used was listed in a file cdkd

hostfile. When PVM was stdaed by the command pvd3 hotle & , &he hostfile was

,ntouionmafly read and the machines wee ready to act as nodes in a paralel applicaion.

The machine from which the application was stauted acted as Ohe maser and the

dave nodes were spawned by first specifying the number of nodes desired (numjnodes)

and then excmuing the tatement

numn = pvm sawn(SLAVENAME, (char**) 0, 0, "", num nodes, tids).

The seection of 4, 8, or 16 nodes was based upon previoum work done by Osrom. (1993)

in the a of the SGP4 code wuing dhe Naval Posgraduate School INTEL

'PSC/2 Hyperobe. This is a Mulipk Instruction stream, Multiple Data stream (MIME)

mutcompue. It consists of a system resowre manager called the host, and eight

individual processors, refenrd to as nodes.

Data for each set of choices discussed above was collected for ten iterations of the

entire program and these results were averaged.
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L Anysi

For ndloced time, pecMet waiter conmunication, qsdup, and

efficieicy, two compariso wer anlsid to menure th performance

of each allun:

(1) For a gven Algrithm, the performance of four, eight, and sixteen

nodes utlized was compared and

(2) For a given number of nodes, thethe algoitkm's performance

was compared.

For both cues above the number of mateflie input records sen

simultaneously was either 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55.

It a important to note that for a&U cases, the ume input record was utilized;

thus, for all three models the number of calls made to SGP4 wad SDP4 was the same.

L RESULTS

1. Read Time

The time to read the data file (cmistng of 8000 records ) varied from

ap tly 39 seconds to 1100 seconds. Thus, the readtime was cxbmly dependent

of the load on the system at the dime the data fie was read. This was in contrast to the

resuts found by Ford and Carvahlo (1993); the number of input records used in their

research was 630 and the read time was appMrximately 5 seconds for each execution.
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2. Eadtowd Time

The adtoend dtie is the most imporant dine considered because it is a reflectio

of die to peufon.mce of each a•oithm designed.

.l Method Comparison

For 4 and 9 nodes, th opimal performnume was waiuved by the Answer Back

Method (ABM). For 16 nodes , with the gof sending 15, 50, or 55 records at a

time the ABM was mprior. That is, when sending 5, 10, 20, 25, 30, 35, 40, and 45

records um anolthe ABM prodluced the fadtest timnes.

From this point on in this analysis, when a given algorithm is uqpior the

majority of the case. (as shown above) the term "in general" will be used. For the case

above, one woWd say "When 16 nodes were uilizd, in general, the Answer Back Method

(ABM) was the best. The following graphs iustate these results:

(1) Using four nodes the Answer Back Method was the fastest:

AM

240

140

S 10 15 20 26 30 36 40 46 60 56
fmler f 8sinst ulPA Reccmts Oft 9u1msANu.y

Figure 4.1 Four Node Comparison of Models
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(2) Usig eigh nodes the Answer Back Method was the fastest.

130
AMM

120--

110 SDI

~100

seoL

70

5 10 15 2 5 30 35 40 45 W0 5

Figure 4.2 Eight Node Comparison of Models

(3) Using sixteen nodes, in general, the Answer Bark Method was fastest.

100
ASI
A--

95- SDI

90- SDII

5 10 15 20- 25 30 3 4 45 50 55
Nxn ber of Satellite Input Reeords Sanm Simultaneously

Figure 4.3 Sixteen Node Comparison of Models

53



b. Node Com~puson

For hc analysis comparing the perfomnance of vaious choices of nodes for a given

algoithm the following conclusions can be made:

(1) For the Answer Back Method, a choice of eight nodes was the best;

closely folowed by sbften nodes.

180
4 Nodes

'140 16 Nodes

120

100

80

5 10 15 20 25 30 35 40 45 50 55

Number of Satellite Input Records Sent Simultaneously

Figure 4.4 Answer Back Model Node Comparison
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(2) For tie Successive Dea I a choice of sixteen nodes is mupeno.

250
4 Nodes

200- 8 Nodes

1100

Figr 4. ucesieDalMthdI oe opaio
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250
4 Nodes

i200 8 Nodes

"j 16 Nodes

150

100

5 10 15 20 25 30 35 40 45 50 5
Number of Sdllt Input Records Sent Sinmltaneously

Figure 4.6 Successive Deal Method II - Node Comparison

It ns interesting to note that for the Answer Back Model utdn eight nodes was

superor over sixteen nodes for all caues. This could be attnibuted to the fact that with

sixteen nodes the communication time (which was naunry greater in the Answer Back

Model) between the maser and slaves decreased the advantages of parallelization; whereas,

with eight nodes the advantages of parallclization Qutysi~hd the disadvantage of the

commnunication time between the master and the slaves.

3. Percent Worker Communication

As one can see from the analysis above, communicton time is an important factor

in the performance of a given algorithm.
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In 'PVM Concuirent Computing Systeu: Evolution, Expmces, and Trends"

Sundamm, Git, and Mancheck (p. 7, 1993) stat that PVM normally opera in a

gmard purpose networked mfviroment and as a rsult, raw puafonnance or speodup of a

wvem aplication is hard to measure. They go on to stat dot "in such a wsmeio, most of

the focus is on communic~ato a ."

With ommunic overhead in mind, the tme each worker spen

vmhmicating wus the time spent c4alating was evaluated. Using aveag values, the

percent of time the worker communmicates was calculated as follows:

%Worker ConumicaionTe A ag CoTmuneicaion Tm (10 )
Average Calculation Time

TIh goal was to increase the amount of time a worker spent calculating and

decrease the time a worker spent communicating, resultingin a small Uconunication

overhead.

a. Model Comparison

For a given number of nodes, the perfornmance of the three models in terms

of comunicamon overhead was evaluated and the results are as follows:

(1) Utilizing four nodes for each model produced varied results; in general,

the ABM and the SDII were the best choices. The minnum percent worker

rommication time was attained by the SDI Method when sending 35 satellite inpM

records at a time.
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30
ABM-4 Nodes

28 -0-
SDI4 Nodes

26
SOII-4 Nodes

244

18

16 . . . . ....

5 10 15 20 25 30 35 40 45 50 55
Nunber of SeteUlte Input Records Sent 81multneoustly

Figure 4.7 Percent Worker Communication For Each Model Using 4 Nodes

(2) When utiizing eight nodes, both Successive Deal Models were, in

gneral spero over the Answer Back Model. The minmum perca worker

communication was attained by SDI[ when sending 55 satellite input records at a time.

34
ABM-8 Nodes

30 S014 Nodes30"
S11-8 Nodes

1 
2B

24

5 10 15 30 25 0 3,5 40 45 50 55
Neumb• of lkhek knl'fl Reco"rds t • -.t Sanuuouuly

Figure 4.8 Percent Worker Communication For Each Model Using 8 Nodes
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(3) Whm utilizng sixteen nodes, again the Successive Deal Methods were

upeior over the Answer Back Method. The minimum percent worker

was attained by the SDJI when sending 35 input records at a time.

ABM-16 Nodes
80 --

8MI-16 Nodes
70--

08DI-16 Nodes1 50
404

30

20

5 10 15 20 25 30 35 40 45 5 1 5
Number of OdSetul Inpt* Records S" UlmuWWously

Figure 4.9 Percent Worker Communication For Each Model Using 16 Nodes

The Successive Deal HI proved to be the best choice in terms of communication

overhead. The Answer Back Method required the additional communication between the

master and slaves which increased the communication overhead. The Successive Deal I

message size was significantly large, producing slightly infeor results than the Sucessive

Deal B which continually dealt out small packets of data.

b. Node Comparison

For a given algorithm, the performance of four, eight, and sixteen nodes was

evaluated in terms of comnunication overhead. The results are as follows:
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(1) For dke ABM, The utiliztion of 4 nod= wn usqirW.

4 NOCes

70 8 Nodes
-U-w

30 4

20

05' 10O 1'5 t0 25 30 36 to466 56
Numnber of SaUtelit Input Recods Sen Sknuftmn.usly

F*gur 4. 10 ABM Permet Worker Communication - Node Compariso

(2) Fr Iked SDIL in goener, die utilizaionm of 4 node. was Ohe best.

4N6d

40. lNodsu

a 10 16 20 26 30 36 40 46 60 66
Uwru mui 4f@dbMpg RsMO OMt Mituusui

F~gur 4. 11 SDI Per cent Worker Coimmuncation - Node Compariso
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(3) For SDII the we of four or eight nodes was the best choice.

45
4 Nodes

40"-
8 Nodes

-0-
35 16 Nodes

2515-
5 10 15 20 25 30 35 40 45 50 55

Nunber of Satellite Input Records Sent S1muktneously

Figure 4.12 SDII Percent Worker Communication - Node Comparison

These results are not surpriing due to the fact that for a given algorithm each

work.'s calculation time is approxinumtly constant (since they a utilize the same input

record) and the communication time between the master and slavs is reduced when there

are fewer slaves.

4. Speedup

As mentioned eauijer, in a general purpose network environment, speedup is hard to

measure with a great deal of confidence.
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Recall, speedup (SP) is calculated as follows:

TP

where T, = Endoend Time on a Single Processor
Tp = Endtoend Time on p Processors

Ideally, the speedup equals "p" the number of processors; however, due to

c icatio costs, sequential bottlenecks, and computational tasks not necessary on a

mingle processor the speedup is less han "p".

With the limitaftons of speedup results discussed above in mind, the following

results were found to be true.

a. Model Comparison

(1) Utilizing four nodes for each model, the ABM was superior.

1.3 IIMb plRel m•Imlmcl

jABMi
126

ELJ

6 W0 16 20 25 30 36 40 46 60 66
Number W IselfIw WA R erdm 3u~ hnsounsmi

Figure 4.13 Speedup Model Comparison When Using Four Nodes
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(2) Utilizing Eight Nodes for ecwh model the ABM wa sumapeor.

2.8
ABMM

2.6 I'MI
'SDI

2.4 *-

I2
1.6

5 10 15 20 2 0 35 40 45 0 5
Nurnber of Sateilt Input Records Sent Sbinufttneously

Figure 4.14 Speedup Model Comparison When Using Eight Nodes

(3) Utilizing sixteen nodes, the ABK in general was the best.

2.6
ABM

2.5 -1--a-
'SDI

2.4

j2.2

2.1

2

5 10 15 20- 25- 30 35 40 4 50 55
Nwinber of SatellIke Input Records Sent Skn uftern~ously

Figure 4. 15 Speedup Model Comparison When Using Sixten Nodes
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b. Node Comparisn

(1) For t~t Answer Back Model using Bor 16 nodes was supenior.

3
4 Nodes

Z5 8 Nodes

16 Nodes,

j2--

1.5

5 10 15 20 5 303 4 5 50 55
Numnbe of 8ide. kInpu Records SuV Skmultiousey

Figure 4.16 Answer Back Model Speedup

(2) For the Successivt DeallIthe use of 16 nodes was superior.

3
4 Nodes

W-4
2.5- 8 Nod"g

115 Nodes
2- ./ -4-.

..10.16....510 3 . 40..6..0..

Figure 4.17 Succeussie Deal I Speedup
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(3) For the Successive Deal Iutfilfingt 16 nodes was superior.

4 Nodes

2.s a Nod"s

0.5
5 10 16 20 25 30 0 40 46 W05

MN~ww of Sideli hqm* RecornsUN 2knukonu~som

Figure 4.18 Successve Deal 11 Speedup

These speedup results we directly relatd to endtoend performance. If one

compares igures 4.4-4.6, the endtoend times for each model, and the figures 4.16-4. 19 of

speusabove an n~vers reltionship is noted.

S. Efficency

Recall, Efficiency = E =-S

where S., = Speedup for p processors
p = Number of processors

Thus, the efficiency is a measure of the speedup per processor or how close the

actual speedup is to the theoretical speedup (p). The efficiency was evalute in taims of a

comarionof models and a comparison of the node performance for a given model. The

results are as follows:
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a. Model Comparison

(1) Utlizing 4 nodes die Answer Bwk Model was superior.

0.32
AMM

0.3 -- S

0286
SDII

0.26

0.24

0.2.

5 10 15 2 25 3 354 45 50,5
Ntnnber of SoketelM nput Records Sent SkmuWtaneotx4

Figure 4.19 Four Node Efficiency Model Comparison

(2) Utilizing 8 nodes, the Answer Bark Model was Superior.

0.34
A1MM

0.32-a
0.3SD

0.28 SDII

0.26

10.24

0.22

0.2

0" 5 10 115 20 25 30 3 4'0 45 5 55
Numnbe of $M*NUke Input Records Sent Sbnuftmneously

Figure 4.20 Eight Node Efficiency Model Comparison
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(3) For sixteen nodes, there w55 a larg Slchuato for Al models; howeve,

a general the Answer Back Model was the best choice.

L. Node Comparison

0'(1) For the ABMK the uffmzaton of 4 or 9 nodes was superior.

0.35
4 Nods.

0.38Nos

0.25 16 Nodes

020

0.15

5- 10 1L5 so5303 0 55 55
Niunbu of 6.oldko ku* Records Sor iUwa*UrwOuIv

Figure 4.21 Answer Back Model Efficiency

(2) For the SDI usuing4 or 9 nodes was the best choice.

0.28
o.26 4 Node$

0.24 -3 Node"

1 0 .2 2 
I s N o dle s

0.16
0.16
0.14
0.12

5 10 15 20 25 30 35 40 45 50 55
mmboer of 8.uIft k"pe Records ftd Ukmuihoeustv

Figure 4.22 Successive Deal I Ecffcency
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(3) For SuccessiveDegII, using 4or 8nodes wauthw educhokec.

0.3
4 Nodes

0.25 8 Nodes

16 Nodes

10.2

0.15

0.1 A A- L
6 10 15 20 25 30 35 40 45 60 6

Number of Satelite Input Record. Sent S1multaneously

Figure 4.23 Successive Deal H Efficiency

It is important to note that with the use of an open networic there are great

flucuaions in the amounit of time taken to perform a given task. 1The execuion time

depend on the number of current system user. and the percentage of the CPU allocated to

each user. For exampl, if one user is running a large application on a given station and

mnodher use is using this same station for PVM applications, the xecuio time wifl

be increased.

In conclusion, considering all factors discussed above, the Answer Back Model

was the best algoulItm. When using four, edght or sixee nodes, the Answer Back Method

produced the best Endtoend times, Speedups and Effliciencies for all anz dafta packets

dii tributed at one time.
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The fastes time reslted with die ABM umng eight nodes and sending five satelite

input records at a time. lle utiliation of 9 nodes gives the maunumn paraflclution

advantag and dhe minimum communication overhead. The Anwer Back Method requird

the saves to notify the master when ready for more data , thi reduced the time spent

waiting for datb, addilonafly the fastest wogken were the ones that processd more data.

In tems of cotmmun~icaio overhead the Succeiiv Deal H Method was mupeior

to the Successive Deal and the ABM. The SDIIdid nthav the added commuication

between the Maste and Slaves that was inheren in the Answer Back Method.

No conclusions can be mude regarding the best size data packet to send because

alhough sending five input records at a ime reulted in die best euidtoend tame of 73.42

seconds the endtoend time when sendin fifty-five records resulted in an endtoend tim of

74.85 secoinds. Fuulher reseaud would need to be conducte to provide conclusivc result

on the optimal size data packet to be distributed.
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V. CONCLUSIONS

The goal of this thesis is to illustrate how a network of computer workstations is

ued as a parallel computer to solve a military requirement oftrcking 800 satellites

dly.

The Air Force Spac Command (AFSPACECOM) satellite computer code an

apWrximaly 2.6 timcs fater by the parllliztion of the code impmented on the

Parallel Virtual Machine (PVM) using 8 workstions. PVM is a small software package

(- Mbyte of C source codc) that allows a network of computers to appear as a

distribuWd-memory parallel computer.

Many scientists do not use thm workstations all the time and when applications

are to be no may need more power than a single worktation can provide. The cost of

allocating large computing resources to each user is rising daily; thus, the use of PVM or

a similar product will be standard in the futu.

For militay applications, this work illustrates how to use PVM to track satellites

usngordinary workstations. A Naval PVM application would be to use a system of

wrkstations located at various enclaves in the ship to track and destroy incoming threats.

Iffte ship took a direct hit in one of its enclaves, the crew would be able to choose

umaffected wokMations to continue computing power; thus, reducing the vulnerability of

the ship.

The AFSPACECONrs Simplified General Pertutbation Model Four (SGP4) has

been the operational theoty since 1976. The SOP4 model uses six classical odrital
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elements, a drag factor, and an epoch time to predict a sallites position and velocity at

a fhutu time.

The SGP4 and it's eoxtnsion, SDP4, are both analytical models. Although the

solutions are not as accurate as numerical techniques, they are compuaially less

elnsive. A detailed discussion of the SGP4's mathematical theory can be found in

Chapt m.

Currently, D.A. Danielson and B. Neta at the Naval Postgraduate School are

doc�Imei and testing a smi-manalyfical satellite motion model developed by Draper

Lab. This will increase the accuracy while decreasing the compuaoal cost. See

documentaon by Danielson, Early, and Neta (1993) and numerical experiments

comparing the scmi-nalytics to numerical and analytical models by Dyer (1993).

Thr7e algorithms were developed to parallelize the AFSPACECOM code and the

performance of each algorithm was tested All three algorithms use a Master and Slave

approach with a separate collector to collect the results and send them back to the

Master. The Mast dismbufts the data to the Slaves. The Slaves perform al the

calculations necessary to produce the position and velocity vectors for each satellite. The

algorithms differed in the manner in which the data is distributed Each algorithm is

tested using four, eight, and sixteen workstatons.

The algorithm that rquird the Slaves to notify the Master when ready for more

daft resulted in the best times, this method is called the Answer Back Method or ABM.

In the ABM, there was less time spen by the Slaves waiting for more data to process
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which resulted in the fastem workers processing the most datL When using four, eight, or

sixteen WORKSIoMs, the ABM poduced the best total times, speedups, and efciencies.

One area of fuwther researh would include the use of more than sixteen

norkstatins nd an algorithm designed to reduce the bottleeack created by the collecting

node. Pehaps, the me of two or more collectors would be advatageou. Additionally,

frdtr resemach sould be condumd to provide conclusive results on the optimal size

data packet to be distributed

Some of t cumrves exhibit l fluctuations, this is probably due to changes in

the numbe of users on the system at the time the data was collected. Furhr research

should be conducted to test if the results am reproducible to somc extent.

The effect of writing the results to an output file was not considered in this

mesarclL Any rsearch conducted in the future should eamine thc results poduced when

including the time required to write to an output file.

In conclusion, the result of this themis confirms that PVM can be used to track

orbiting-earth satellites. The use of workstations for parallel processing uses untapped

power and decreases the amount of computational time required. As the number of

objects to be tracked and the cmpuaional power required increases this work will

become icreasingly more important.
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APPENDIX A: SOURCE CODE

* satjaster_ab.c LAST UPDATE: Oct 5 1993 *

* LT S.K. Brewer *
* This is the master program for the Answer Back Method. It uses PVM *
* to simulate a 2D torus of processors;n+l slaves are spawned, of *
* which n are working nodes and 1 is the collecting node. *
* Satellite data is issued to the workers in *Answer Back" fashion, *
* sending new data to a working node only when the node is ready. *
"* Timing data, collecting for statistical purposes only, are placed in *
"* the file mtiming.anso which will be placed in the directory from *
"* which this master program is invoked. *

#include <stdio.h> /* INCLUDE STANDARD I/O FUNCTIONS */
#include "pvm3.h* /* INCLUDE PVM FUNCTIONS
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <sys/types.h>

#define SLAVENAME Oat.run"
int main(argc, argv) /* GET FILE NAME FROM COMMAND LINE */

int argc;
char *argv[];

(
int numn_nodes=3; /* NUMBER OF SLAVE NODES */
int numn_satdata=15; /* input data records distributed */
int numelements=22; /* NUMBER OF elements in each data record */
double sat[10000][22]; /* ARRAY OF satellite input records */
int its,nod,size,delta=5;
int num, mytid, i=O, j, k, tids[32], msgtag, reading=l;
int numsat=O, collector, leftover, worker, sets, worknodes,done=O;
struct timeval ts[4]; /* Number of time stamps */
int who;
float endtoend,tcomm,average=O.O,avcoll=O.O,avcomm=O.O,avcalc=0.0;
float cmtime, commtime, cctime, calctime, readtime, ccomm,avpcm=0.0;
float avpcl=O.O,aa=0.0;
FILE *infile, *timing;
int msgtag99=99;

gettimeofday(&ts[O],(struct timeval *)0);/* BEGIN READING DATA FILE */

/* OPEN DATA FILE */
if ((infile = fopen(argv[l], Or")) == NULL)
( printf('infile = %s did not open\n-, argv[l]);
exit(l);

)
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/~READ ENTIRE DATA FILE AT ONCE *
while(reading 1=EOF)

(if ((reading = fscanf(infile, O%1f, &sat[ntumsat](O])) 1= EOF)
for 0j=1; j<nuni-elements; +4+j)

fscanf(infile, 8%lf", &sat~numsat] Ci]);
numsat=numsat+l; 1* COUNT NUMBER OF SATELLITES IN DATA FILE *

fclose(infile);
numsat=numsat-1;
gettimeofday(&ts~llistruct tixneval *)Q); /* END READING DATA FILE *
/* SET UP FILE FOR TIMING STATISTICS ~
timing = fopen(Otiming.anso, Oao);
readtime = (ts(l].tvý_sec-ts(O].tv...sec)*lOOOOOO+ts[lJ.tv...usec-tsEOJ .tv-usec;
fprintf(timing, mTime to read data file =%ld microseconds\n", readtime);
for(size=O; size<55; size +=delta)

numr_satdata = size + 5;
for(nod=O; nod<3; ++nod)

if (nod == 0)
num_nodes = 3;

else
if (nod == 1)

nuin_nodes = 7;
else ntuxn_nodes = 15;

fprintf(timing, "sats,nodes, endtoend collector-cormm
worker-comm worker_calc\nl);
fprintf (timing,"%d %d\rw, num-satdata,numnodes);

for(its=O; its<l; ++its)

gettimeofday(&ts[2], (struct tirneval *)Q);/* BEGIN END TO END TIME*/
/ ~ ENROLL IN PVM

mytid = pvm-mjytidfl;

/* START UP SLAVE TASKS *
num=pvm~spawn(SLAVENAME, (char**)0, 0, 0", num-nodes, tids);
collector=tids (0];

/~SEND SLAVES THIER INDICES INTO THE TID ARRAY ~
msgtag=l;
for (i=0; icnurn-nodes; ++i)

( pvrnk.initsend(PvmDataRaw);
pvnL~pkint (&i, 1,1);

if (i==0)
pvm~pkint(&numsat, 1, 1); /* TELL COLLECTOR NUMBER OF SATS ~

else
pvm...pkint(&collector, 1, 1);/* TELL WORKERS COLLECTOR'S ADDRESS*/
pvm....send( tidsti], msgtag);
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/* SEND SETS OF SATELLITE DATA TO WORKERS, WAITING FOR ANSWER BACK ~
msgtag=2;
k=O;
work_nodes =nulrLnodes-1;

sets=nuxnsat/nuum_satdata;
leftover=numsat-sets*numr_satdata;
i=O;
for(j=l;j<nurL~nodes; ++j) 1* DEAL ONE SET OF SATELLITES TC~ EACH WORKER *

CpvmL_initsend(PvmDataRaw);
pvm...pkint (&nun...satdata, 1,1);
for (k=O; k<nuni_satdata; ++k)
Cpvrn..pkdouble(sat(i], nuni-elements. 1);
i=i+l;

pvuk-send(tidsfj], msgtag);
sets=sets-l;

while(sets>O) /* DEAL REMAINING SETS TO WORKERS AS THE NODES BECOME FREE ~
pvmjý_nitsend(PvmDataRaw);
pvrn..pkint (&num-satdata, 1,1);
for (k=O; k<numn_satdata; ++k)
(pvm..-pkdouble(sat[i], num_elements, 1);
i~i+l;

sets=sets- 1;
pvm~recv(-l, msgtag99);
pvm~upkint (&who, 1, 1);
pvxnýsend(tids [who] ,msgtag);

if (leftover>O) /* SEND LEFTOVERS TO WHOEVER IS READY NEXT *

pvmr_initsend(PvmnDataRaw);
pvm..pkint (&leftover, 1,1);
for (k=O; k<leftover; ++k)
C pvmnpkdouble(sat[i], num_elements,l);

i=i+l;

pvm~recv(-l,msgtag99);
pvm~upkint(&who, 1,1);
pvm~send(tids [who] ,msgtag);

pvnýijnitsendCPvmDataRaw);
pvm..pkint(&done, 1, 1); /*TELL WORKERS NO MORE DATA IS COMING*/
pvxn~jncast(tids, numnnodes, xnsgtag);

msgtag=5;/* RECEIVE PROGRAM COMPLETE SIGNAL FROM COLLECTOR *

pvm...recv( -l ,msgtag);
/* COMPLETE END TO END TIME
gettimeofday(&ts(3J, (struct timneval *)Q);
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/* GATHER TIMING STATISTICS FROM SLAVES ~
msgtag=4;
for (i=O; i<nurq_nodes; ++i)

pvxn...recv(-l,msgtag) ;
pvmnupkint (&who, 1,1);
if (who == 0) /* TIMES FROM COLLECTOR ~

pvmnupklong(&c-comm, 1,1);

else
/* TIMES FROM WORKERS *

pvmnupklong(&cctime, 1,1);
calctime=calctime+cctixne;
pvrru-upklong(&cmtime, 1,1);
cornit ime=commt ime+cmt ile;

pvnx...exit 9
/* COMPUTE OVERALL TIMING STATISTICS *

ýndtoend=(float) (ts[3] .tv_sec-ts[2] .tvsec)*l000000+
(float)ts[3].tv-Usec-(float)ts[2].tv~usec;

/*convert to seconds*/
c-conun=c-comzn/l.0E6;
endtoend=endtoend/ 1 0E6;
comxntime=comzntixe/l 0E6;
calctime=calctirne/l.0E6;
/* TOTAL TIME*/

average =average + endtoend;-
avcoll =avcoll + c-cornm; /*collector communication time*/
avcorm = avcomm + cornmtime; /*worker communication time*/
avcalc =avcalc + caictime; /*worker calculation time*/
fprintf (timing, %6.2f %6.2f

%6.2f %6.2f\n",endtoend,c~comm,cornmtime,calctime);

average =average/its;
avcoll =avcoll/its;
avcomrn avcommr/its;
avcalc =avcalc/its;
avpcln=avcommr/ (nurrunodes-l);
avpcl=avcalc/ (num-nodes-l);
aa= (avpcm/avpcl) *100;
1* print results to output file - not shown in this code ~

fclose(tirning);
printf (ENTIRE SEQUENCE COMPLETE');
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/ *************************** ******************* ** ***** *** ******

* satslave_ab.c LAST UPDATE: 05 OCT 1993 *

* Susan Brewer *

* This is the slave program for the Answer Back Method. *

* It uses PVM to simulate a 2D torus of processors. *

* The slave with index 0 will be the collecting node. *

"* This program "answers back* for more data. *

"* The Fortran sub-routine Isgp4m'is called to perform the *

"* calculations for orbit prediction *

#include npvm3.h" /* INCLUDE PVM FUNCTIONS
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <sys/types.h>

main()
(

double results[7*100+1]; /* ARRAY OF RESULTS */
int numelements=22; /* FIELDS IN INPUT SATELLITE RECORD */
double sat data[22]; /* ONE SATELLITE INPUT RECORD
int max=8000, sats=l;
int sat_no;
int i,j, k, t, r_length; /* COUNTERS
int tids[32]; /* ARRAY OF PPOCESSOR IDS */
int mytid, numnode; /* MY PROCESSOR ID
int me, collector; /* MY INDEX INTO THE TIDS ARRAY
int master,msgtag, msgtag2=2, msgtag3=3, msgtag99=99;
struct timeval ts(4];
int ressets=O;
float s=0.0, u=0.0, totaltime, calc, comm;

extern sgp4m_ (); /* EXTERNAL SUB-ROUTINE FOR ORBIT PREDICTION */

mytid = pvm-mytid(); /* ENROLL IN PVM */
master=pvm_.parent();

/* RECEIVE MY INDEX AND COLLECTOR'S TID FROM MASTER
gettimeofday(&ts[0], (struct timeval *)0);
msgtag = 1;
pvmi._recv( -1, msgtag );
pvmnupkint(&me, 1, 1); /* GET MY INDEX IN THE ARRAY OF TIDs */

pvmupkint(&collector, 1, 1): /* GET THE COLLECTING NODE'S TID*/
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if(me == 0) /* IF I AM THE COLLECTING NODE:

for(i=0; i< max; ++i)

pvmý...recv( -1, msgtag3);
pvnt..upkint(&sat...no, 1, l);/* RECEIVE RESULT SETS *

pvm...upkint(&r~length, 1, 1);
pvm....upkdouble(results, r...length, 1);

msgtag=5; /* TELL MASTER ALL RESULTS HAVE BEEN received ~
pvm__nitsend(PvmDataRaw);
pvm...send(master, msgtag);

else /*If I AM A WORKING NODE:

while(sats>0) /* REPEAT UNTIL MASTER SENDS DONE SIGNAL
pvmýrecv(-l, msgtag2);

pvm...upkint(&sats, 1, 1);
for (i=O; i<sats; ++i)
{pxnqupkdouble(sat-data, nurnielements 1l);

sat_no=(int)sat...data(l];
gettimeofday(&ts[2], (struct timeval *)O);
sgp4m_ (sat..Aata, results); /* CALL SUB..ROUTINE*/
gettirneofday(&ts[3J, (struct timeval *)Q);
s=s+ts(3] .tv...sec-ts[2] .tv~sec;
u=u+ts [3] .tv__usec-ts [2) .tv~usec;
r~length=7*(int)resultsEO]+l; /* NUMBER OF RESULTS RECORDS *

pvxnjnitsend (PvmDataRaw);
pvm....pkint( &sat~no, 1, 1 ); /* SATELLITE NUMBER *

pvm...pkdouble( results, r..lerigth, 1 ); /*PACK *
pvm...send(collector, msgtag:3); /* SEND *

pvm..-initsend(PvmifataRaw); /*TELL MASTER I'M READY FOR MORE DATA *

pvm-pkint(&me, 1,1);
pvm...send(master, msgtag99);

)*TIMING STATISTICS TO BE SENT TO MASTER *

gettimeofday(&ts[l], (struct timeval *)Q);
totaltime=(float)(ts[lJ.tv_sec-ts[O].tv-sec)*lOOO00+

(float)ts~l].tvusec-(float)ts[0].tv...usec;
calc = s*1000000 + u;
comm = totaltime - caic;
msgtag=4;
pvxnL_initsend (PvmDataRaw);
pvm...pkint(&me, 1,1);

if(me == 0)

pvm-pklong(&totaltime, 1,1);

else

pvm...pklong(&calc, 1,1) ;pvm~pklong(&comm, 1,1);

pvmýsend(master,msgtag);
pvm...exito(;
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* sat_masterSDI.c LAST UPDATE: Oct 12 1993 *

* LT S.K. BREWER *

* This is the master program for the Successive Deal Method I. *

* It uses PVM to simulate a 2D torus of processors;n+l slaves *

* are spawned, of which n are working nodes and I is the *
* collecting node. Satellite data is issued to the workers by *
* first dealing one data package (num_satdata) to each worker, *

*then deal l/(2*working nodes)times the number of data sets *
* left(numxsets) .Followed by a final deal of equal packets to *
*each worker. Any leftover records are sent last. Timing data, *
*collectina for statistical purposes only, are placed in the *
"* file ".iming* which will be placed in the directory from which *
"* this master program is invoked. *

#include <stdio.h> /* INCLUDE STANDARD I/O FUNCTIONS
#include "pvm3.h* /* INCLUDE PVM FUNCTIONS
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <sys/types.h>

#define SLAVENAME "t.run"
int main(argc, argv) /* GET FILE NAME FROM COMMAND LINE */
int argc;
char *argv[];
{

int num_nodes; /* NUMBER OF SLAVE NODES */
int num_satdata; /* NUMBER OF input data records*/
int num-elements=22; /* NUMBER OF elements */
double sat[10000] [22]; /* ARRAY */
int its,nod,size,delta=5;
int num, mytid, i=0, j=0, k=0, s=0, tids[32], msgtag;
int numsat=0, collector, reading=l;
int leftover=0,setsleft=0,worker=0, sets=0,num_sets=0;
int worknodes=O,done=0;
struct timeval ts[4]; /* Time Stamps required */
int who;
float endtoend=0.0,tcomm=0.0,average=0.0,avcoll=0.0;
float avcomm=0.0,avcalc=0.0,ccomm,avpcm=0.0,avpcl=0.0,aa=0.0;
float cmtime, commtime, cctime, calctime, readtime;
FILE *infile, *timing;

/* BEGIN READING DATA FILE */
gettimeofday(&ts[0],(struct timeval *)0);
/* OPEN DATA FILE */
if ((infile = fopen(argv[l], "rm)) == NULL)

printf(linfile = %s did not open\n', argvll]);
exit(l);

)
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/~READ ENTIRE DATA FILE AT ONCE *
while(reading !=EOF)

(if ((reading = fscanf(infile, 0%lfw, &sat~numsatlf0l)) 1= EOF)
for (j=l; j<nuni-elements; ++j)

fscanf(infile, ntlfa, &sat(numsat] Ci]);
riumsat=numsat.1; /* NUMBER OF SATELLITES IN DATA FILE *

fclose(infile);
numsat=nuznsat -1;
/* END READING DATA FILE *

gettimeofday(&ts[l], (struct timeval *)O);
/* SET UP FILE FOR TIMING STATISTICS *
timing = fopen(otimingu, ma);
readtime = (ts[l].tvý_sec-ts(O].tv._.sec)*1OOOOOO+

ts(1].tvý_usec-ts[O].tv...usec;
fprintf(tirning,wTime to read data file =%ld microseconds\n',readtime);
for(size=O; size<55; size +=delta)

nuin_satdata = size + 5;
for(nod=O; nod<3; ++nod)

if (nod == 0)
nuxnk-nodes = 3;

else
if (nod == 1)
nuin-nodes = 7;

else nuxnL_nodes = 15;
for(its=O; its<10; ++its)

leftover=0;
setsleft=0;
sets=O;
nuzn_sets=O;

gettimeofday(&ts[2J, (struct timeval *)0);/* BEGIN END TO END TIME*/

/ ********ENROLL IN PVM

mytid = pvm-jnytido;

/* START UP SLAVE TASKS *
num=pvm..spawn(SLAVENAME, (char**)0, 0, 0", nuxn_nodes, tids);
collector=tids [0];

1* SEND SLAVES THIER INDICES INTO THE TID ARRAY *
msgtag=l;
for (i=0; i<num-nodes; ++i)
( pvzn_initsend(PvmDataRaw);

pvmn..pkint (&i, 1, 1);
if (i==0)

pvzn..pkint(&numnsat, 1, 1);
else

pvm..pkint(&collector, 1, 1);
pvm-send( tids[i], msgtag);
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/* SEND SETS OF SATELLITE DATA TO WORKERS ~
nisgtag=2;
M=;

work-nodes=nuxn-nodes-i;
sets=numsat /nunL~satdata;
leftover=nunmsat-sets*num-satdata;
00O;
for(j=1;j<nunt-.nodes; ++j) /* DEAL SET OF SATS TO EACH WORKER *

pvnm.initsend(PvmDataRaw);
pvm~pkint (&numn..satdata, 1, 1);
for (k=O; k<num...satdata; ++k)
(pvm~pkdouble(sat(i], nuxn...elements,l);
i=i+1;

pvmn..send(tids~j], msgtag);

) esst-oknds
sets-sets-work/(2nodes; ds)

for(j=l; j<nuxn_nodes; ++j) /* Deal 1/2p records *

for(s=O; swnum-sets; ++s)

pvm-initsend(PvxuDataRaw);
pvm..pkint(&nuxn satdata,1,1);
for (k=O; k<num-satdata; ++k)

pvm~pkdouble (sat (i], nun~elexnents, 1);
i=j+l;

pvm~send(tids~j] ,msgtag);

sets=sets-(num sets~work-nodes);
nuin-sets=sets/work-nodes;
setsleft=sets-(nuxn sets*work...nodes);
/* Deal remaining records in equal packets *
for(j=l; j<nuzn_nodes; ++j)

for(s=O; sw~um-sets; ++s)

pvmin.nitsend(PvrnDataRaw);
pvmn..pkint (&num-isatdata, 1,1);
for (k=O; k~cnuxn-satdata; ++k)

{v~kobestinmeeet~)

i~i+l;

pvm-..send(tids[j] 1rsgtag);
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if(setsleft>O) /*send leftover sets*/

for(s=O; s<setsleft; +.s)

pvm~init send (PvmDataRaw);
pvnt.pkint (&nuxn_satdata, 1, 1);
for (k=O; k<nuxn-satdata; ++-ik)

pvm-pkdouble (sat Ci], num~elements, 1);

pvmnsend(tids[l],msgtag);

if(leftover>O) /* send leftover records*/

pvm~initsend (PvmDataRaw);
pvmatpkint (&leftover, 1,1);
for (j=O; j<leftover; ++ji-)

pvnt..pkdouble(sat [i], ni-am~elements, 1);
i=i+l;

pvm...send(tids[lJ ,msgtag);

pvrn...initsend (PvmDataRaw);
pvrn..pkint(&done, 1, 1); /* TELL WORKERS NO MORE DATA IS COMING*/
pvm..mcast(tids,nuxn-nodes, msgtag);

nlsgtag=5;/* RECEIVE PROGRAM COMPLETE SIGNAL FROM COLLECTOR *

pvxix..recv(-l,msgtag) ;

gettimeofday(&ts[3],(struct timeval *)Q); I* END TO END TIME*/

/* GATHER TIMING STATISTICS FROM SLAVES *

msgtag=4;
for (i=O; i<num-nodes; ++i)

pvrii..recv(-l,msgtag);
pvm....upkint (&who, 1, 1);
if (who == 0) /* TIMES FROM COLLECTOR ~

pvm-upklong(&c-comm,l,l);/* TIME COLLECTOR COMM *

else /* TIMES FROM WORKERS ~

pvrn..upklong(&cctime, 1,1);
calctime=calctiine+cctim~e;
pvn\..upklong(&cmtime, 1,1);
commt imne=commt ime+cmt ime;

pvnL-exit U;
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/* COMPUTE OVERALL TIMING STATISTICS *

/*COM4M TIME*/

endtoend=(float) (ts[3] .tv._.sec-ts[2J .tvý_sec)*l000000+
(float)ts[3].tv _usec-(float)ts[2].tvý_usec;

/*convert to seconds*/
c-conun=c-comm/1.0E6;
endtoend=endtoend/1 . E6;
commtime=comnmtirne/l . E6;
calctiine=calctixne/1 .0E6;
I' TOTAL TIME*/

average =average + endtoend;
avcoJ.1 avcoll + c-comzn; /*collector communication timne*/
avcommn avcomrn + commtirne; /*worker commxunication timne*/
avcalc =avcalc + caictinie; /*worker calculation time*/

endtoend 0.0;calctime =0.0;commrtirne =0.0;c..comrn 0.0;

average =average/its;

avcoll =avcoll/its;

avconun avcomzn/its;
avcalc =avcalc/its;

avpcrn=avcornr/ (num-nodes-l);
avpcl=avcalc/ (nurn~nodes-1);
aa=(avpcm/avpcl) *100;
/* Print results to output file -not shown in this code ~
average=0 .0;
avcoll=0 .0;
avco,..n=0 . 0;
avcalc=0 .0;
avi --0.0;
avpcl=0 .0;
aa=0 .0;

fclose(tirnincg);
printf("ENTIRE SEQUENCE COMPLETE - results have been appended to timning*);
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* satslaveSDI.c LAST UPDATE: 12 OCT 1993 *

* LT S.K. BREWER *

* This is the slave program for Successive Deal I. *

* It uses PVM to simulate a 2D torus of processors. *

* The slave with index 0 will be the collecting node. *

"* The Fortran sub-routine 6sgp4m6 is called to perform *

"* the calculations for orbit prediction. *

#include mpvm3.h* /* INCLUDE PVM FUNCTIONS *1
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <sys/types.h>

main()
(

double results[7*100+l]; /* ARRAY OF RESULTS */

int numelements=22; /* NUMBER OF FIELDS */
double sat_data[22]; /* ONE SATELLITE INPUT RECORD*/
.nt sats=lmaxsats;
int satno;
int i,j, k, t, r_length; /* COUNTEKS */
int tids[32]; /* ARRAY OF PROCESSOR IDS */
int mytid, numnode; /* MY PROCESSOR ID */
int me, collector; /* MY INDEX INTO THE TIDS ARRAY */
int master,msgtag, msgtag2=2, msgtag3=3;
struct timeval ts[4];
float s=0.0, u=0.0, totaltime, calc, comm;

extern sgp4m. (); /* rERNAL SUB-ROUTINE */

mytid = pvm jmytid(; /* ENROLL IN PVM */
master=pvmparent();

/* RECEIVE MY INDEX AND COLLECTOR'S TID FROM MASTER */
gettimeofday(&ts[O], (struct timeval *)0);
msgtag = 1;
pvmrecv( -1, msgtag );
pvm.upkint(&me, 1, 1); /*GET MY INDEX IN THE ARRAY OF TIDs*/
pvm_.upkint(&collector, 1, 1);
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if(me == 0) /* IF I AM THE COLLECTING NODE *

maxsats=col lector;
for(i=0; i~maxsats; ++i)

pvnL~recv( -1, msgtag3);
pvmtL.upkint(&sat...no, 1, 1);/* RECEIVE RESULT Sets ~
pvmnj~xpkint(&r...length, 1, 1);

pvm~upkdouble(results, r...length. 1);

msgtag=5; /* TELL MASTER ALL RESULTS HAVE BEEN received ~
pvnmjnitsend (PvmflataRaw);
pvM__.send(master, msgtag);

else /* If I AM A WORKING NODE *

while(sats>0) /* REPEAT UNTIL MASTER SENDS DONE SIGNAL ~
(pvin...recv(-l, msgtag2);
pvrrnupkint (&sats, 1, 1);
for (i=0; i<sats; ++i)
{pvm~upkdouble(sat-data, nurn_elements l1);

sat-no=(int)sat-data~l];
gettimeofday(&ts[2], (struct timeval *)Q);
sgp4rn... (sat...data, results); /* CALL SUB-ROUTINE *

gettimeofday(&ts[3], (struct timeval *)Q);
s=s+ts[3] .tv..sec-ts[2J .tv~sec;
u=u+ts(3] .tv__usec-ts(2J .tv..usec;
r_length=7*(int)resultsEO]+l;
pvm..initsend (PvmDataRaw);
pvm~pkint( &sat..no, 1, 1 );/* SATELLITE NUMBER*/
pvm~pkint( &r~length, 1, 2.);
pvm~pkdouble( results, r-length, 1I) /*PACK *
pvrn..send(collector, msgtag3); /* SEND *

/*TIMING STATISTICS TO BE SENT TO MASTER ~
gettimeofday(&ts(lL (struct tirneval *)O);
totaltime=(float)(ts~l].tv_sec-ts(O].tv-sec)*lOOOOOO+

(float)ts(l].tv~usec-(float)ts[O].tv..usec;
caic =s*1000000 +4 u;
comm = totaltime - caic;
msgtag=4;
pvm initsend(PvmDataRaw);
pvm...pkint(&rne, 1,1);
if(me == 0)

pvm...pklong(&totaltime, 1,1);

else

pvm....plongC&calc,l,l); pvrn..jklong(&comm,l,l);

pvrn...send(master,msgtag) ;pvný_exit U;
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* satmaster_SDII.c LAST UPDATE: Oct 13 1993 *
* LT S.K. BREWER *
* This is the master program for the Successive *
* Deal II. It uses PVM to simulate a 2D torus of *
* processors; n+l slaves are spawned, of which n *
* are working nodes and 1 is the collecting node. *
* Satellite data is issued to the workers by *
* constantly dealing out equal size data packs. *

* Timing data, collecting for statistical purposes*
* are placed in the file "timrrm which will be *
* placed in the directory from which this master *
* program is invoked. *

********************** ****** *** ****** **** * * *

#include <stdio.h> /* INCLUDE STANDARD I/O FUNCTIONS */
#include "pvm3.h" /* INCLUDE PVM FUNCTIONS */
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <sys/types.h>

#define SLAVENAME "t.run*
int main(argc, argv) /* GET FILE NAME FROM COMMAND LINE */
int argc;
char *argv[];

int num_nodes; /* NUMBER OF SLAVE NODES */
int num_satdata; /* # input records dealt */
int numelements=22;
double sat[10000][22]; /* ARRAY */

int its,nod,size,delta=S;
int num, mytid, i=O, j, k, tids[32], msgtag;
int numsat=O, collector, leftover, worker, sets;
int work_nodes, done=O,reading=l;
struct timeval ts(4]; /* Number of time stamps * /
int who;
float endtoend,tcomm, average=O.O,avcoll=0.0;
float avcomm=0.0,a" alc=0.0, readtime, c comm,avpcm=0.0;
float cmtime,commtime,cctime,calctime,avpcl=O.O,aa=O.O;
FILE *infile, *timing;
/* BEGIN READING DATA FILE */
gettimeofday(&ts[O], (struct timeval *)0);

/* OPEN DATA FILE */
if ((infile = fopen(argv(l], "ro)) == NULL)
( printf(Oinfile = %s did not open\n', argv(l]);

exit(1);
)
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I~READ ENTIRE DATA FILE AT ONCE *
while(reading ! EOF)

(if ((reading = fscanf(infile, w%lf", &sat(numsat](O])) != EOF)
for (j=l; j<nuzn_elements; ++j)
fscanf(infile, O%lfO, &sat(nurnsat] (ii);
numsat=numsat~l;/* COUNT NUMBER OF SATELLITES IN DATA FILE *

fclose(infile);
nuznsat=numsat -1;
/* END READING DATA FILE *

gettimeofday(&ts[1J, (struct timeval *)O);
I* SET UP FILE FOR TIMING STATISTICS *
timing = fopen(otimrr, "a,);

readtime = (ts[lJ.tv._sec-ts[O].tv....sec)*3OOOOOO+
ts[lJ.tvý-usec-ts[O].tv-usec;

for(size=O; size<55; size +=delta)

nuxný_satdata = size + 5;

for(nod=O; nod<3; ++nod)

if (nod == 0)
nurm_nodes = 3;

else
if (nod == 1)

nuin_nodes =7

else nuni-nodes =15;

for(its=0; its<l0; ++its)
( /* BEGIN END TO END TIME ~
gettimeofday(&ts[2], (struct timeval *)Q);

/********ENROLL IN PVM

inytid = pvmrý_mytido;

1* START UP SLAVE TASKS ~
nuin=pvimýspawn(SLAVENAME, (char**)0, 0, 0", nuzn_nodes, tids);
collector=tids [0]

/ SEND SLAVES THIER INDICES INTO THE TID ARRAY *
msgtag=l;
for (iinO; i<nuim_nodes; ++i)
{ pvmj~nitsend(PvrnDataRaw);

pvrn..pkint(&i, 1,1);
if (i==0)

pvm..pkint(&numsat, 1, 1);
else

pvm...pkint(&collector, 1, 1);
pvm-.send( tids(i], mnsgtag);
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/* SEND SETS OF SATELLITE DATA TO WORKERS *

msgtag=2;
k=O;
work~nodes=nuxn_nodes-i;
sets=numsat/num-satdata;
leftover=nuxnsat-sets*nuxn_satdata;

for (i0O; i<sets; ++i)
{worker = i-(i/work..ýnodes)*work-nodes+l;

pviA..initsend (PvmDataRaw);
pvn-pkint(&numýsatdata, 1, 1);
for(j=O; j<nurrL..satdata; ++j)
{pvmn..pkdouble(sat[k], nuxn_elements, 1);
k=k+l;

pvrrLsend( tids(worker], xnsgtag);

if (leftover>O) 1* SEND LEFTOVERS *

pvxnL_initsend(PvxnDataRaw);
pvm...pkint(&leftover, 1, 1);
for(j=O; j<leftover; ++j)

{ pvmnpkdouble(sat[kJ, num-elements, 1);
k=k+l;

pvrn ~send(tids~work~nodes], insgtag);

pvrn~initsend (PvmDataRaw);
/* TELL WORKERS NO MORE DATA IS COMING *

pvm..pkint(&done, 1, 1);
for(j=l; j< nuxn_nodes; ++j)

pvm..send(tids~jJ, rnsgtag);

msgtag=5;/* RECEIVE PROGRAM COMPLETE SIGNAL FROM COLLECTOR*/
pvm....recv( -l,msgtag);
/* COMPLETE END TO END TIME
gettimeofday(&ts(3], (struct timeval *)O);
1* GATHER TIMING STATISTICS FROM SLAVES *

msgtag=4;
for (i=O; i<numn_nodes; ++i)

(pvrn recv(-l,msgtag);
pvmjupkint (&who,1l,1);
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if (who == 0) /* TIMES FROM COLLECTOR *

pvni....pklong(&c...comm,l,1); /* TIME COLLECTOR SPENT COMMUNICATING *

else
/* TIMES FROM WORKERS ~
(pvrn..upklong(&cctime,l,l); /* TIME SPENT CALCULATING RESULTS ~
calctime=calctime+cctime;
pvm-..upklong(&cmtime,l,l); /* TIME SPENT COMMUNICATING OR WAITING ~
commt ixe=commt ime+cmt ile;

/* COMPUTE OVERALL TIMING STATISTICS *
/*COMM TIME*/

endtoend=(float) (ts(3] .tv...sec-ts[2].tv_sec)*l000000+

/*convert to seconds*/
c-cornr=c-comrn/1 . E6;
endtoend=endtoend/l1. 0E6;
conuntime=cornmtime/l . E6;
calctinie=calctirne/l .0E6;
/* TOTAL TIME*/

average =average + endtoend;
avcoll =avcoll + c~cornm; /*collector communication timre*/
avcorm = avcommr + comintime; /*worker communication timne*/
avcalc =avcalc + caictime; /*worker calculation timne*/

endtoend =0.0;calctime = 0.0;comrntime = 0.0;c~comm =0.0;

average =average/its;

avcoll =avcoll/its;

avcomm =avcornm/its;
avcalc =avcalc/its;

avpcrn=avcomm/ (numnnodes-l);
avpcl=avcalc/ (num~nodes-l);
aa= (avpcrn/avpcl) *100;
/* Print statistics to output file -not shown in code *
average=0 .0;
avcoll=0 .0;
avcomrn=0 .0;
avcalc=0 .0;
avpcm=0 .0;
avpcl=0 .0;
aa=0 .0;

fclose(timing);
printf(*ENTIRE SEQUENCE COMPLETE )
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/***********************************************************

* satslaveSDII.c LAST UPDATE: 13 OCT 1993 *

* LT S.K. BREWER *

* This is the slave program for Successive Deal I. *

* It uses PVM to simulate a 2D torus of processors. *
* The slave with index 0 will be the collecting node. *
"* The Fortran sub-routine *sgp4m' is called to perform *
"* the calculations for orbit prediction. *

#include mpvm3.ho /* INCLUDE PVM FUNCTIONS
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <sys/types.h>

main()
(

double results[7*100+l]; /* ARRAY OF RESULTS */
int numq_elements=22; /* NUMBER OF FIELDS */
double satdata[22]; /* ONE SATELLITE INPUT RECORD*/
int sats-i,maxsats;
int sat_no;
int i,j, k, t, r_length; /* COUNTERS */
int tids[32]; /* ARRAY OF PROCESSOR IDS */
int mytid, numnode; /* MY PROCESSOR ID */
int me, collector; /* MY INDEX INTO THE TIDS ARRAY */
int master,msgtag, msgtag2=2, msgtag3=3;
struct timeval ts[4];
float s=0.0, u=0.0, totaltime, calc, comm;

extern sgp4m_. (); /* EXTERNAL SUB-ROUTINE */

mytid = pvmmytid); /* ENROLL IN PVM */
master=pvmparent();

/* F7CEIVE MY INDEX AND COLLECTOR'S TID FROM MASTER
gettimeofday(&ts[0], (struct timeval *)0);
msgtag = 1;
pvm recv( -1, msgtag );
pvm...upkint(&me, 1, 1); /*GET MY INDEX IN THE ARRAY OF TIDs*/
pvm.upkint(&collector, 1, 1);
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if(me == 0) /* IF I AM THE COLLECTING NODE *

maxsats~collector;
for(i=O; i<rnaxsats; ++i)

pvm~recv( -1, msgtag3);
pvm...upkint(&sat...no, 1, l);/* RECEIVE RESULT Sets *
pvm...upkint(&r...length, 1, 1);

pvm-upkdouble(results, r~length, 1);

msgtag=5; /* TELL MASTER ALL RESULTS HAVE BEEN received ~
pvm....initsend(PvmDataRaw) ;
pv'm...send (master, xnsgtag) ;

else 1* If I AM A WORKING NODE ~

while(sats>O) /* REPEAT UNTIL MASTER SENDS DONE SIGNAL *
(pvm....recv(-l, msgtag2);
pvrnýupkint(&sats, 1, 1);
for (i=0; i<sats; ++-i)

pvlrLupkdouble(sat~data, nuxn-elements ,l);
sat-no=(int)sat ...datalEl];
gettimeofday(&ts(2], (struct timeval *)Q);
sgp4m.... (sat..data, results); /* CALL SUB-ROUTINE *
gettimeofday(&ts[3J, (struct timeval *)0);
s=s+ts[3J .tv..sec-tsE2J .tv_sec;
u=u+ts[3] .tv._usec-ts 12] .tv-usec;
r_length=7*(int)results[0]+l;
pvrrj~nitsend (PvmDataRaw) ;
pvm..pkint( &sat~no, 1, 1 );/* SATELLITE NUMBER*/
pvm-pkint( &r-length, 1, 1);
pvm..pkdouble( results, r~length, 1 );/*PACK *
pvxt~send(collector, msgtag3); /* SEND *

)*TIMING STATISTICS TO BE SENT TO MASTER ~
gettimeofday(&tsfll],(struct timeval *)0);
totaltime=(float) (ts[l] .tvsec-ts[O].tv_sec)*lOOOOOO+

(float)ts[l] .tvýjasec-(float)ts(0] .tv~usec;
caic = s*l000000 + u;
comm = totaltime - calc;
rnsgtag=4;
pvm ýinitsend(PvmDataRaw);
pvm..pkint(&me, 1,1);
if(me == 0)

pvm...pklong(&totaltime, 1,1);

else

pvm..pklong(&calc,l,l); pvm..pklong(&comm,l,l);

pvzn...send(master,msgtag) ;pvm....exit 0;
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* seq.c LT S.K. BREWER OCT 25 93 *

"* This is a sequential version of the satellite orbit *
"* prediction program using SGP4. *

#include <stdio.h> /* INCLUDE STANDARD I/O FUNCTIONS*/
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <sys/types.h>

int main(argc, argv) /* GET FILE NAME FROM COMMAND LINE*/
int argc;
char *argv[];
{

int iterations=50;
int num_elements=22;
double sat[32CO00[22];/*ARRAY OF SATELLITE INPUT DATA */
int its; /* NUMBER OF ITERATIONS OF THE PROGRAM */

int i=O, j, k, t, reading=l;
int numsat=0;
struct timeval ts[4]; /* Number of Time Stamps Required*/
float endtoend=0.0,average=0.0
long readtime;
int satno;
double results[7*100+1];
FILE *infile, *timing;

extern sgp4rr_ ();
/* BEGIN READING DATA FILE */

gettimeofday(&ts[0], (struct timeval *)0); /* OPEN DATA FILE*/
if ((infile = fopen(argv[l], *r")) == NULL)

{ printf(linfile = %s did not open\nm, argv[l]);
exit(l);

)

1* READ ENTIRE DATA FILE AT ONCE */
while(reading != EOF)
( if ((reading = fscanf(infile,"%lfo,&sat[numsat][0])) != EOF)

for (j=l; j<num_elements; ++j)
fscanf(infile, "%lf", &sat(numsat][j]);

numsat=numsat+l; /* COUNT NUMBER OF SATELLITES IN DATA FILE */
)

fclose(infile);
numsat=numsat-1;

gettimeofday(&ts[l],(struct timeval *)0); /* END READING DATA FILE */
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/* SET UP FILE FOR TIMING STATISTICS *
timing =fopen("timing.seq", 'a");

readtime =(ts[l] .tv...sec-tsEO] .tv...sec)*lOOOOOO+
ts~l].tvý_usec-ts[O].tvusec;

for(its=O; its<iterations; ++its)

gettimeofday(&ts[2], (struct timeval *)Q);
for (i=O; i~nuxnsat; ++i)
( sat...no=(int)satfi][lJ;
sgp4m... (sat~i], results);

gettimeofday(&ts[3], (struct timeval *)O);
endtoend=(float) (ts[3].tv-sec-ts[2].tvý_sec)*lOOOOOO+

(float)ts(3].tvusec-(float)ts[2J.tvý_usec;
/* convert to seconds */

endtoend=endtoend/ 1. E6;
1* write results to timing output file1

fprintf(tixning, "\n Endtoend time (sec) =%6.2f\n
m ,endtoend);

/* Total Time */
average=average+endtoend;

average =average/ its;
fprintf(tiining, *\n Average Endtoend time (sec)= %6.2f\n", average);
fclose(timing);

printf(*\nENTIRE SEQUENCE COMPLETE )
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